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Nuclear interactions are critical for understanding 
neutron star structure and evolution
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It has been suggested that, when the pressure within stellar matter becomes high enough,
a new phase consisting of neutrons will be formed. In this paper we study the gravitational
equilibrium of masses of neutrons, using the equation of state for a cold Fermi gas, and general
relativity. For masses under —,Q only one equilibrium solution exists, which is approximately
described by the nonrelativistic Fermi equation of state and Newtonian gravitational theory.
For masses —,'Q &m&-,'Q two solutions exist, one stable and quasi-Newtonian, one more
condensed, and unstable. For masses greater than 4 Q there are no static equilibrium solutions.
These results are qualitatively confirmed by comparison with suitably chosen special cases
of the analytic solutions recently discovered by Tolman. A discussion of the probable eEect
of deviations from the Fermi equation of state suggests that actual stellar matter after the
exhaustion of thermonuclear sources of energy will, if massive enough, contract indefinitely,
although more and more slowly, never reaching true equilibrium.

I. INTRoDUcTIQN
~OR the application of the methods commonly

used in attacking the problem of stellar
structure' the distribution of energy sources and
their dependence on the physical conditions
within the star must be known. Since at the time
of Eddington's original studies not much was
known about the physical processes responsible
for the generation of energy within a star,
various mathematically convenient assumptions
were made in regard to the energy sources, and
these led to different star models (e.g. the
Eddington model, the point source model, etc.).
It was found that with a given equation of state
for the stellar material many important properties
of the solutions (such as the mass-luminosity
law) were quite insensitive to the choice of
assumptions about the distribution of energy
sources, but were common to a wide range of
models.
In 1932 Landau' proposed that instead of

making arbitrary assumptions about energy
sources chosen merely for mathematical con-
venience, one should attack the problem by first
investigating the physical nature of the equi-
librium of a given mass of material in which no
energy is generated, and from which there is no
radiation, presumably in the hope that such an
~A. Eddington, The Internal Constitution of the Stars

(Cambridge University Press, 1926); B. Stromgren,
Ergebn. Exakt. Naturwiss. 10, 465 (1937);Short summary
in G. Gamow, Phys. Rev. 53, 595 (1938).' L. Landau, Physik. Zeits. Sowjetunion 1, 285 (1932).

3

investigation would afford some insight into the
more general situation where the generation of
energy is taken into account. Although such a
model gives a good description of a white dwarf
star in which most of the material is supposed to
be in a degenerate state with a zero point energy
high compared to thermal energies of even 10'
degrees, and such that the pressure is determined
essentially by the density only and not by the
temperature, still it would fail completely to
describe a normal main sequence star, in which
on the basis of the Eddington model the stellar
material is nondegenerate, and the existence of
energy sources and of the consequent temperature
and pressure gradients plays an important part in
determining the equilibrium conditions. The
stability of a model in which the energy sources
have to be taken into account is known to depend
also on the temperature sensitivity of the energy
sources and on the presence or absence of a
time-lag in their response to temperature changes.
However, if the view which seems plausible at
present is adopted that the principal sources of
stellar energy, at least in main sequence stars, are
thermonuclear reactions, then the limiting case
considered by Landau again becomes of interest
in the discussion of what will eventually happen
to a normal main sequence star after all the
elements available for thermonuclear reactions
are used up. Landau showed that for a model
consisting of a cold degenerate Fermi gas there
exist no stable equilibrium configurations for
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Outline

• The nuclear equation of state—a quick reminder 

• Experimental constraints near saturation density 

• Masses, radii from X-ray bursts & implications for the 
EOS 

• Strong neutrino cooling in the neutron star crust
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From nuclei to neutron stars

4

( , ) = ����� /

� �� � �
/

� �� �
� ( � )

� �� �
+ . . .

� � = / /

( ) = � = � + ( � ) .



From nuclei to neutron stars | 
thermodynamics
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The NS radius is correlated with pressure 
at near-saturation densities
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dramatic, also occurs in models GS2 and PCL2, which
contain mixed phases containing a kaon condensate and
strange quark matter, respectively. All other normal EOSs
in this Ðgure, except PS, contain only baryons among the
hadrons.

While it is generally assumed that a sti† EOS implies
both a large maximum mass and a large radius, many
counter examples exist. For example, GM3, MS1, and PS
have relatively small maximum masses but large radii com-
pared to most other EOSs with larger maximum masses.
Also, not all EOSs with extreme softening have small radii
for M [ 1 (e.g., GS2, PS). Nonetheless, for stars withM

_masses greater than 1 only models with a large degreeM
_

,
of softening (including strange quark matter conÐgurations)
can have km. Should the radius of a neutron starR= \ 12
ever be accurately determined to satisfy km, aR= \ 12
strong case could be made for the existence of extreme
softening.

To understand the relative insensitivity of the radius to
the mass for normal neutron stars, it is relevant that a New-
tonian polytrope with n \ 1 has the property that the stellar
radius is independent of both the mass and central density.
Recall that most EOSs, in the density range of haven

s
È2n

s
,

an e†ective polytropic index of about 1 (see Fig. 1). An

n \ 1 polytrope also has the property that the radius is
proportional to the square root of the constant K in the
polytropic pressure law P \ Ko1`1@n. This suggests that
there might be a quantitative relation between the radius
and the pressure that does not depend upon the EOS at the
highest densities, which determines the overall softness or
sti†ness (and, hence, the maximum mass).

In fact, this conjecture may be veriÐed. Figure 3 shows
the remarkable empirical correlation that exists between the
radii of 1 and 1.4 normal stars and the matterÏs pressureM

_evaluated at Ðducial densities of and Table 11n
s
, 1.5n

s
, 2n

s
.

explains the EOS symbols used in Figure 3. Despite the
relative insensitivity of radius to mass for a particular EOS
in this mass range, the nominal radius which is deÐnedR

M
,

as the radius at a particular mass M in solar units, still
varies widely with the EOS employed. Up to D5 km di†er-
ences are seen in for example. Of the EOSs in Table 1,R1.4,
the only severe violations of this correlation occurs for
PCL2 and PAL6 at 1.4 for and for PS at both 1 andM

_
n
s
,

1.4 for In the case of PCL2, this is relatively close toM
_

2n
s
.

the maximum mass, and the matter has extreme softening
due to the existence of a mixed phase with quark matter. (A
GS model intermediate between GS1 and GS2, with a
maximum mass of 1.44 would give similar results.) InM

_
,

FIG. 3.ÈEmpirical relation between pressure, in units of MeV fm~3, and R, in kilometers, for EOSs listed in Table 1. The upper panel shows results for 1
(gravitational mass) stars ; the lower panel is for 1.4 stars. The di†erent symbols show values of RP~1@4 evaluated at three Ðducial densities.M

_
M

_

Lattimer & Prakash 2001



EOS near ρ0 | experimental constraints

7

J. Phys. G: Nucl. Part. Phys. 41 (2014) 093001 Topical Review

Figure 2. Constraints on the density dependence of the symmetry energy from both
heavy-ion collisions and nuclear-structure observables. Left: correlation between S0
and the slope of the symmetry energy L at saturation density (see text for a detailed
description). Right: the symmetry energy S(ρ) as a function of baryon density (see text
for a detailed description).

Constraints on the density dependence of the symmetry energy obtained from heavy-ion
experiments are shown in figure 2 in two representations and are compared against those
obtained from nuclear-structure observables discussed in section 4. On the left-hand panel of
figure 2 we display constraints on the symmetry energy S0 ≡ J and its slope L at saturation
density. The blue hatched area labeled HIC(Sn + Sn) was determined from isospin diffusion
observables measured in mid-peripheral collisions of Sn isotopes [97]. A constraint on the
symmetry energy obtained in recent measurements of the mean N/Z distributions of the emitted
fragments with radioactive ion beams of 32Mg on a 9Be target at 73 MeV per nucleon is shown
by the area enclosed by the dashed purple line labeled HIC(RIB) [98]. (Note, that the limits of
S0 in these two areas only indicate the range of values used in the transport simulations and are
not to be interpreted as experimental limits on S0 from HICs.) These constraints from HICs
are compared against those obtained from nuclear structure; in particular, from studies of (a)
isobaric analogue resonances (blue dashed polygon) [99], (b) the electric dipole polarizability
in 208Pb (gold shaded region) [59, 60, 100] both with better than 90% confidence limit (Cl),
and (c) nuclear binding energies using the UNEDF0 EDF (two red curves forming part of an
ellipsoid, about 90% Cl) [101]. These are basically independent constraints, and one may get a
stronger constraint in principle by finding the overlap region in the plane of S0 and L. However,
for each of these constraints, we observe a strong correlation between S0 and L, suggesting
that the observable is sensitive to the symmetry energy at low densities.

As alluded in section 4.1, the masses of neutron-rich nuclei place a stringent constraint
on the value of the symmetry energy around ρ = (2/3)ρ0; see equation (10). In particular,
two analyses with Skyrme functionals found the rather tight values of S(ρ = 0.1 fm−3) =
25.4 ± 0.8 MeV [49] and S(ρ = 0.11 fm−3)= 26.65 ± 0.2 MeV [50]. These values have been
plotted in the right-hand panel of figure 2 as an open square and an open circle, respectively.

On the right-hand panel of figure 2 we show a different interpretation of the constraints
by focusing directly on the density dependence of the symmetry energy S(ρ). The shaded
area labeled HIC(Sn+Sn) results from the analysis also shown on the left of isospin diffusion
observables from [97]. From the analysis of isobaric analogue states (IAS) by [99] two
constraints have been reported. The area enclosed by the dashed blue line comes from the

16
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Horowitz et al. (2014)
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Skyrme models satisfying constraints | 
symmetry energy
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SKYRME INTERACTION AND NUCLEAR MATTER CONSTRAINTS PHYSICAL REVIEW C 85, 035201 (2012)

the standard Skyrme Hamiltonian. The contribution of the
new terms to the mean field is zero for spin-saturated systems.
Consequently the properties of the original Skyrme interaction
are not changed in this case. However, in nuclear matter,
four new parameters have to be adjusted to values of Landau
parameters at saturation density extracted from the G matrix.
This procedure is rather involved and is beyond the scope of
the present work. We suggest that parametrizations SKRA and
SQMC700 would be the best candidates for future application
of this treatment [56].

We note that the density dependence of the parameter G′
0,

indicates a spin-isospin instability if G′
0 falls below −1. Such

an instability has been interpreted as the appearance of a
pion condensate [143,144]. Of the remaining parametrizations,
only KDE0v1 and LNS predict such transition in SNM below
3ρo. All the other Landau parameters are within the natural
constraints.

C. Density dependence of the symmetry energy

One rather surprising result, which came out of our
analysis, is that the CSkP exhibit a growing spread in density
dependence of the symmetry energy beyond about twice the
nuclear saturation density. This feature is illustrated in Fig. 10
and Table VIII and suggests that constraining the derivatives
of the symmetry energy at the saturation point is not sufficient
for controlling the slope of S(ρ) at higher densities. Clearly,
more experimental data are needed to constrain the Skyrme
interaction at supersaturation densities.

It turns out that, by considering the symmetry energy
being the difference between the energy per particle in pure
neutron and symmetric matter (to first order), the factor
which mainly determines the behavior of the symmetry energy
with increasing density is the pure neutron matter EoS. In
Fig. 11 we see energy per particle in PNM and SNM as

TABLE VIII. Selected properties of nuclear matter as predicted
by consistent Skyrme parametrizations at 3ρo. L(ρo) is included for
a comparison. All quantities are in MeV except for m∗, which is
dimensionless.

Force m∗ S L(ρo) L(3ρo) Ksym Qsym

GSkI 0.536 60.92 63.45 89.71 −253.92 947.56
GSkII 0.557 36.42 48.63 −69.49 −731.84 1226.76
KDE0v1 0.493 55.31 54.69 53.66 −192.75 1366.50
LNS 0.612 54.15 61.45 23.06 −515.88 1027.81
MSL0 0.571 53.91 60.00 50.80 −424.29 776.89
NRAPR 0.430 53.38 59.63 27.72 −468.17 1024.00
Ska25s20 0.942 58.41 63.81 51.87 −411.53 1047.02
Ska35s20 1.000 57.75 64.83 43.51 −473.55 1027.22
SKRA 0.748 44.07 53.04 −22.54 −596.94 1093.69
SkT1 1.000 48.17 56.18 −0.31 −527.96 1158.54
SkT2 1.000 48.17 56.16 −0.14 −527.25 1157.11
SkT3 1.000 47.53 55.31 0.78 −515.94 1134.50
Skxs20 0.899 61.70 67.06 56.83 −428.23 1058.16
SQMC650 0.779 33.65 52.92 −76.28 −173.15 349.74
SQMC700 0.507 49.98 59.06 −6.52 −603.34 1109.31
SV-sym32 0.749 44.14 57.07 −42.43 −759.99 1060.52
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FIG. 10. (Color online) Density dependence of the symmetry
energy S as a function of ρ

ρo
as calculated by Skyrme interactions

consistent with macroscopic constraints.

a function of density as calculated with Skxs20, QMC700,
and GSkII parametrizations. These forces were chosen as
they correspond to the top, middle, and bottom curves in
Fig. 10. We see clearly that the energy per particle curves
for SNM are rather similar in all three panels, but for PNM
they exhibit systematically different patterns. In a sense this
is not surprising. Skyrme parametrizations are usually fitted
to properties of nuclei with either N = Z or a low value
of isospin. The EoS for PNM is well constrained at low
densities; at supersaturation densities we have to rely on
theoretical models or seek indirect evidence from astrophysical
extrapolations, e.g., to neutron stars. So, constraining the PNM
EoS by study of very neutron rich heavy nuclei should be
desirable.

D. High-mass cold neutron stars

One possibility is to use the Skyrme EoS in cold neutron star
models up to 3ρo. Here the Skyrme interaction is applied to n +
p + e + µ BEM rather then symmetric or pure neutron matter.
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FIG. 11. (Color online) Energy per particle in PNM and SNM as
a function of particle number density ρ for three selected Skyrme
parametrizations, Skxs20, SQMC700, and GSkII.
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Skyrme models | fits to properties of 
doubly magic nuclei
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F00ð!Þ ¼ "ð"$ 1Þb!"$2 $ ð2=9Þc!$4=3 þ ð10=9Þd!$1=3:

(4)

Given a fixed c and d one can write

½Fð!Þ=!' ¼ aþ b!"$1 þ Að!Þ (5)

and

F0ð!Þ ¼ aþ b"!"$1 þ Bð!Þ; (6)

where

Að!Þ ¼ c!$1=3 þ d!2=3 (7)

and

Bð!Þ ¼ ð2=3Þc!$1=3 þ ð5=3Þd!2=3: (8)

These equations provide the results needed to obtain a
and b in terms of Fð!oÞ and F0ð!oÞ at a fixed point ! ¼ !o,

b ¼ F0ð!oÞ $ ½Fð!oÞ=!o' þ Að!oÞ $ Bð!oÞ
ð"$ 1Þ!"$1

o

; (9)

and

a ¼ ½Fð!oÞ=!o' $ b!"$1
o $ Að!oÞ: (10)

It is conventional to define the value and derivatives at
!om ¼ 0:16 fm$3 with J ¼ Fð!omÞ, L ¼ 3!omF

0ð!omÞ
and K ¼ 9!2

omF
00ð!omÞ.

There are two independent EOS, one for the SNM EOS,
Fm ¼ ðE=AÞ with cm ¼ 75 MeV fm2, and another for the
neutron EOS, Fn ¼ ðE=NÞ with cn ¼ 119 MeV fm2 (the
values for c are from the Fermi-gas model). From these two
functions one obtains the symmetry energy, S ¼ Fsym ¼
Fn $ Fm, with asym ¼ an $ am, etc. J and L are usually
associated with Fsym; although they can be also be applied
to Fm and Fn (e.g., Jsym ¼ Jn $ Jm). The equations above
provide analytical forms for the correlations between a, b,
d, ", J, L, K, Fð!oÞ and F0ð!oÞ.
For a given " and effective mass (d), the values of

Fð!oÞ and F0ð!oÞ determine the entire EOS. For example,
with " ¼ 1:25 and an effective mass of unity for the SNM
EOS (dm ¼ 0 MeV fm5), the well-established values
Fmð!omÞ ¼ $16:0 MeV, F0

mð!omÞ ¼ 0:0 MeV fm3 lead
to bm ¼ $924 MeV fm3" [Eq. (9)], am ¼ 822 MeV fm3

[Eq. (10)], andKm ¼ 219 MeV [Eq. (4)]. With Eq. (1), this
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FIG. 2 (color online). (a) EOS obtained from the Skyrme
interactions fitted to properties of doubly magic nuclei with
0.20 fm for the neutron skin of 208Pb and m(

n=m ¼ 0:90 at !on ¼
0:10 fm$3. (b) EOS obtained from the Skyrme interactions fitted
to properties of doubly magic nuclei with values of 0.16 and
0.24 fm for the neutron skin of 208Pb together with m(

n=m ¼
0:90. See caption to Fig. 1. The vertical lines are placed at
! ¼ 0:10 and 0:16 fm$3. The horizontal lines are placed at
25 MeV for S and 11 MeV for E=N.
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FIG. 1 (color online). (a) EOS obtained from the Skyrme
interactions. (b) EOS obtained from the Skyrme interactions
fitted to properties of doubly magic nuclei and with a constraint
of Rnp ¼ 0:20 fm for the neutron skin of 208Pb. The black lines
are those from the CSkP set with m(=m ) 1:0, the red lines are
those from the CSkP set with m(=m ¼ 0:70–0:85. The blue lines
are those for SLy4 and SkM*. The vertical line is placed at
! ¼ 0:16 fm$3.

PRL 111, 232502 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

6 DECEMBER 2013

232502-3

B A Brown 2013; B A Brown & Schwenk 2014

NB. Rnp = Rn – Rp for 
208Pb;  
Rnp = 0.33+0.16-0.18 fm 
(Abrahamyan et al. ’12) 

Rnp is correlated with 
P(ρ≈2/3 ρ0) 

PREx-II approved; will 
measure Rnp to 0.05 fm 



M, R from just 
nuclear physics…
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FIG. 1: Pressure of neutron star matter based on chiral low-momentum interactions for densities ρ < ρ1 (corresponding
to a neutron density ρ1,n = 1.1ρ0). The band estimates the theoretical uncertainties from many-body forces and from an
incomplete many-body calculation. At low densities, the results are compared to a standard crust EOS [17], where the right
panel demonstrates the importance of 3N forces. The extension to higher densities using piecewise polytropes (as explained in
the text) is illustrated schematically in the left panel.

with binding energy aV = 16MeV and incompressibility
K = 230MeV (which are within theoretical uncertainties
of the nuclear matter calculations of Ref. [10]). To in-
clude the symmetry energy in Eq. (1), we use the Ansatz
S2(ρ) = S2(ρ/ρ0)γ and fit S2 ≡ S2(ρ0) and γ to our neu-
tron matter results. The fit has a relative uncertainty of
< 5% for densities ρ0/8 < ρ < ρ1 = 3.0 × 1014 g cm−3

(ρ1 corresponds to a neutron density ρ1,n = 1.1ρ0). We
obtain the following symmetry energy parameters and
proton fractions:

c1 [GeV−1] c3 [GeV−1] S2 [MeV] γ x(ρ0)

−0.7 −2.2 30.1 0.5 4.8%
−1.4 −4.8 34.4 0.6 7.2%

NN-only EM 26.5 0.4 3.3%
NN-only EGM 25.6 0.4 2.9%

The resulting pressure of neutron star matter is shown
in Fig. 1 for densities ρ < ρ1, where the band is domi-
nated by the uncertainty in c3. The comparison of these
parameter-free calculations to a standard crust EOS [17]
shows good agreement to low densities ρ ! ρ0/10 within
the theoretical uncertainties. In addition, the right panel
of Fig. 1 demonstrates the importance of 3N forces. The
pressure obtained from low-momentum NN interactions
only, based on the RG-evolved N3LO potentials of Entem
and Machleidt (EM) [12] or Epelbaum et al. (EGM) [13],
differ significantly from the crust EOS at ρ0/2.
Neutron stars.– The structure of non-rotating neutron

stars without magnetic fields is determined by solving
the Tolman-Oppenheimer-Volkov (TOV) equations. Be-
cause the central densities reach values higher than ρ1,
we need to extend the uncertainty band for the pressure
of neutron star matter beyond ρ1. To this end, we intro-
duce a transition density ρ12 that separates two higher-
density regions, and describe the pressure by piecewise
polytropes, P (ρ) = κ1ρΓ1 for ρ1 < ρ < ρ12, and

P (ρ) = κ2ρΓ2 for ρ > ρ12, where κ1,2 are determined by
continuity of the pressure. Ref. [18] has shown that such
an EOS with 1.5 < Γ1,2 < 4.0 and transition densities
ρ12 ≈ (2.0− 3.5)ρ0 can mimic a large set of neutron star
matter EOS. We therefore extend the pressure of neu-
tron star matter based on chiral EFT in this way, with
1.5 < Γ1,2 < 4.5 and 1.5 < ρ12/ρ0 < 4.5, as illustrated
in Fig. 1. The possibility of a phase transition at higher
densities is implicitly taken into account if one regards
the Γ1,2 values as averages over some density range.
We solve the TOV equations for the limits of the pres-

sure band below nuclear densities continued to higher
densities by the piecewise polytropes. The range of Γ1,2

and ρ12 can be constrained further, first, by causal-
ity, which limits the sound speed to the speed of light
and, second, by the requirement that the EOS support
a 1.65M⊙ star [19]. The resulting allowed range of poly-
tropes is shown by the light blue band at higher density
in Fig. 2 [27]. The comparison with a representative set
of EOS used in the literature [16] demonstrates that the
pressure based on chiral EFT interactions (the darker
blue band) sets the scale for the allowed higher-density
extensions and is therefore extremely important. It also
significantly reduces the spread of the pressure at nu-
clear densities from a factor 6 at ρ1 in current neutron
star modeling to a factor 1.5.
Results.– In Fig. 3 we show the neutron star M -R

curves obtained from the allowed EOS range. The blue
region corresponds to the blue band for the pressure in
Figs. 1 and 2. At the limits of this region, the pressure
of neutron star matter is continued as piecewise poly-
tropes, and all curves end when causality is violated.
Should causality be violated before the maximum mass
(at dM/dR = 0) is reached, one could continue the M -
R curves by enforcing causality. This would lead to a
somewhat larger maximum mass, but would not affect
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FIG. 2: Comparison of the EOS based on Fig. 1 to a represen-
tative set of EOS used in the literature [16]. The blue band
corresponds to the band in Fig. 1 and the lighter region covers
the range of polytropes allowed (see text for discussion).

the masses and radii of neutron stars with lower central
densities. We observe from the transition density points
ρ12 in Fig. 3 that the range of Γ1 dominates the uncer-
tainty of the general extension to high densities. Smaller
values of Γ1 are excluded because the associated EOS is
not able to support a 1.65M⊙ star. The larger allowed
values of the polytropic indices lead to very low central
densities ρ ∼ (2.0− 2.5)ρ0.

We find that the pressure at nuclear densities and be-
low sets the scale for the M -R results. The blue region
in Fig. 3 ends almost at the central value of the radius
results. For a 1.4M⊙ star, the radius is constrained to
R = 9.3 − 13.5 km, as indicated by the vertical band.
While going from neutron matter to beta equilibrium
can reduce individual results for an 1.4M⊙ star by up to
0.4 km, the overall result is very similar for pure neutron
matter with R = 9.3− 13.3 km. Furthermore, if a 2.0M⊙

star were to be observed, this would reduce the allowed
range to R = 10.5 − 13.3 km. As for the EOS in Fig. 2,
the presented radius constraint significantly reduces the
spread of viable neutron star models, e.g., it is difficult
to see how one can obtain R ≈ 15 km as is the case for
the Shen EOS [20]. Finally, our results are more rigorous
than an estimate based on the empirical PR−4 correla-
tion [16], which for the values of the pressure we find,
P (ρ0) = 1.4− 2.1MeV fm−3, implies R = 9.4− 11.9 km.

When chiral 3N forces are neglected, the neutron star
radius is significantly smaller, with RNN = 8.8− 11.0 km
as shown in Fig. 4 based on low-momentum NN interac-
tions only. This demonstrates that the theoretical error
for the radius of a 1.4M⊙ star is due, in about equal
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FIG. 3: Neutron star M -R results for the EOS based on
Fig. 1. The thick (thin) lines, corresponding to the left (right)
branch, start from the low pressure limit c1 = −0.7GeV−1,
c3 = −2.2GeV−1 (high pressure limit c1 = −1.4GeV−1,
c3 = −4.8GeV−1). The blue region corresponds to the band
below nuclear densities in Figs. 1 and 2. The different piece-
wise polytropes can be identified from the colors/lines indi-
cating Γ1/Γ2 and from the points denoting ρ12. The vertical
band gives the radius constraint for a 1.4M⊙ star.

amounts, to the uncertainties in 3N forces and to the
extension to higher densities dominated by Γ1.

Effect of the crust.– In our calculations, the difference
between the neutron and proton masses was neglected
and the phases were assumed to be spatially uniform.
In this approximation, matter at low density consists
only of neutrons. The impact of using a more realis-
tic EOS at low densities can be investigated by observ-
ing that the surface gravity of the star is approximately
constant in the outer layers. By integrating the equa-
tion of hydrostatic equilibrium from the surface of the
star up to a crust density ρc, one finds that the mass
between the density ρc and the surface is proportional
to the pressure at ρc [21]. Thus the stellar mass is to a
good approximation unaffected by changes in the EOS
at ρ < ρc. To determine how changes in the low-density
EOS affect the radius, we note that the thickness of the
crust (ρ < ρc) is ∆R = [µ(ρc) − µs]/[mg(1 + z)], where
g = GM(1 + z)/R2 is the surface gravity, with surface
redshift 1+z = [1−2GM/(Rc2)]−1/2 [22]. Here µs is the
(neutron) chemical potential at the surface of the star,
where the pressure is zero. For the calculations in this
paper, µs = mc2, while for realistic EOS of cold catal-
ysed matter it includes the binding energy per particle
of solid iron, ≈ 8MeV. Thus use of a more realistic
EOS at low densities will increase the radius of the star

Hebeler et al. (2010), PRL  
EOS similar to results from QMC—Gandolfi et al.

NB. Predicts Rnp = 0.17±0.03 fm
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Fig. 10.— Top panel Distribution of (normalized) peak burst
flux Fpk/FEdd for radius-expansion (dark gray) and non-radius ex-
pansion (light gray) bursts. The distribution of peak fluxes of the
radius-expansion bursts is broad, with standard deviation 0.14.
The radius-expansion burst with the lowest peak flux ≃ 0.3FEdd is
from 4U 1636−536 (see also §A.8). The black histogram shows the
combined distribution. Bottom panel Distribution of normalized
fluence Ub = Eb/FEdd for both types of bursts. There is signif-
icant overlap between the two distributions, suggesting that the
amount of accreted fuel is relatively unimportant in determining
whether bright bursts exhibit radius expansion or not. Not shown
are 18 extremely energetic bursts with Ub > 20 s, all exhibiting
radius-expansion, from 4U 0513−40, 4U 1608−52, 4U 1636−536,
4U 1724−307, GRS 1741.9−2853 (2), GRS 1747−312, GX 17+2
(8), XB 1832−330, HETE J1900.1−2455 and 4U 2129+12.

ergetic PRE bursts from the same source. For example,
the brightest burst from GRS 1741.9−2853, on 1996 July,
reached a peak flux 25% higher than the next brightest
PRE burst. The 1996 July burst had Ub = 65, com-
pared to the next highest value of 23. Similarly, the first
burst observed by RXTE from the millisecond accretion-
powered pulsar HETE J1900.1−2455 had a peak flux
20% greater than the second, again with a much higher
Ub = 55 compared to 15.

While these two factors played a significant role in
the overall variation of PRE burst peak fluxes, smaller
variations were observed from other sources without no-
tably under- or over-luminous PRE bursts. For exam-
ple, the peak PRE burst fluxes from 4U 1728−34 were
normally distributed with a fractional standard devia-
tion of 10%. In that case quasi-periodic variations on
a timescale of ≈ 40 d were observed in both the peak
PRE burst flux, and the persistent intensity (measured
by the RXTE/ASM; Galloway et al. 2003). The residual
variation of Fpk,PRE for subsets of bursts observed close
together in time (once the ≈ 40 d trend was subtracted)
was consistent with the measurement uncertainties, in-
dicating that the intrinsic variation of the peak PRE
burst luminosity is actually ! 1%. A correlation between
the PRE burst fluence and the peak flux was attributed
to reprocessing of the burst flux in the accretion disk.
The fraction of reprocessed flux may vary from burst to

Fig. 11.— An example of an extremely strong photospheric
radius-expansion burst observed from 4U 1724−307 in the globu-
lar cluster Terzan 2 by RXTE. Top panel Burst luminosity (in units
of 1038 erg s−1; middle panel blackbody (color) temperature kTbb;
and bottom panel blackbody radius Rbb. LX and Rbb are calcu-
lated assuming a distance to the host globular cluster Terzan 2 of
9.5 kpc (Kuulkers et al. 2003). The time at which the flux reaches
its maximum value is indicated by the open circle. Note the gap in
the first 10 s of this burst, preceded by an abrupt increase in the ap-
parent blackbody radius to very large values. This gap was caused
not by an interruption in the data but because the radius-expansion
was sufficiently extreme to drive the peak of the spectrum below
the PCA’s energy range. In such cases we expect the luminosity
is maintained at approximately the Eddington limit, although it is
no longer observable by RXTE.

burst as a result of varying projected area of the disk,
through precession of the disk possibly accompanied by
radiation-induced warping. That the persistent flux from
4U 1728−34 varies quasi-periodically on a similar time
scale to Fpk,PRE is qualitatively consistent with such a
cause. It is plausible that comparable variations due to
similar mechanisms may be present in other sources.

Even assuming that the mean peak flux of PRE bursts
approaches the characteristic FEdd value for each source,
it is to be expected that the Eddington luminosities for
different sources are not precisely the same. Inconsisten-
cies are perhaps most likely to arise from variations in the
composition of the photosphere (the hydrogen fraction,
X , in equation 7); the neutron star masses, as well as
variations in the typical maximum radius reached dur-
ing the PRE episodes (which affects the gravitational
redshift, and hence the observed LEdd) may also con-
tribute. We can be most confident regarding the pho-
tospheric composition in the ultracompact sources like
3A 1820−303 (§A.39), where the lack of hydrogen in
the mass donor rules out any significant abundance in
the photosphere. However, for the majority of burst-
ing sources the uncertainty in X is the dominant uncer-
tainty in (for example) distance determination via PRE
bursts. One clue as to the composition is provided by the
PRE bursts from 4U 1636−536, which reach peak fluxes
that are bimodally distributed (Galloway et al. 2006).

RXTE observations; Galloway et al. ’08
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Figure 5. Plot of 1σ and 2σ contours for the mass and radius of the neutron
star in EXO 1745−248, for a hydrogen mass fraction of X = 0, based on
the spectroscopic data during thermonuclear bursts combined with a distance
measurement to the globular cluster. Neutron star radii larger than ∼ 13 km are
inconsistent with the data. The descriptions of the various equations of state and
the corresponding labels can be found in Lattimer & Prakash (2001).
(A color version of this figure is available in the online journal.)

The measurement of the mass and the radius of a neutron
star can significantly constrain the range of possibilities for
the equation of state of ultradense matter, as discussed above.
However, it cannot uniquely pinpoint to a single equation
of state because of both the measurement errors and the
uncertainties in the fundamental parameters that enter the
nuclear physics calculations, such as the symmetry energy
of nucleonic matter or the bag constant for strange stars.
Further, even tighter constraints on the equation of state can
be obtained by combining observations of neutron stars with
different masses that will distinguish between the slopes of the
predicted mass–radius relations, which are determined entirely
by the physics of the neutron star interior.

A number of other constraints on neutron star radii have been
obtained to date using various methods. Özel (2006) used spec-
troscopic measurements of the Eddington limit and apparent
surface area during thermonuclear bursts, in conjunction with
the detection of a redshifted atomic line from the source EXO
0748–676, to determine a mass of M ! 2.10 ± 0.28 M⊙ and a
radius R ! 13.8±1.8km. This radius measurement is consistent
with the one presented in the current paper to within 2σ , and,
therefore, several nucleonic equations of state are consistent
with both measurements.

Radii have also been measured from globular cluster neutron
stars in binaries emitting thermally during quiescence, such as
X7 in 47 Tuc and others in ω Cen, M 13, and NGC 2808 (Heinke

et al. 2006; Webb & Barret 2007; note that we do not consider
here isolated neutron stars such as RX J1856–3754 because
of the unquantified systematic uncertainties arising from the
apparent temperature anisotropies on the neutron star surfaces
and their probable magnetic nature; see Walter & Lattimer
2002; Braje & Romani 2002; Tiengo & Mereghetti 2007). These
measurements have carved out large allowed bands in the mass–
radius plane, all of which are also consistent with equations of
state that predict neutron stars with radii R ∼ 11 km. Future
tight constraints on the masses and the radii of additional neutron
stars with these and other methods (see e.g., Lattimer & Prakash
2007) will resolve this long-standing question of high-energy
astrophysics.

We thank Rodger Thompson for his help with understand-
ing the NICMOS calibrations, Duncan Galloway for his help
with burst analyses, Adrienne Juett for bringing the source to
our attention, and Martin Elvis for useful conversations on con-
straining the neutron star equation of state. We also thank an
anonymous referee for useful suggestions. F.Ö. acknowledges
support from NSF grant AST 07-08640. D.P. is supported by
the NSF CAREER award NSF 0746549.
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a Gaussian probability distribution, i,e.,

P (A)dA = 1
√

2πσ 2
A

exp
[
− (A − A0)2

2σ 2
A

]
(5)

with A0 = 91.98 (km/10 kpc)2 and σA = 1.86 (km/10 kpc)2.
Previous studies have yielded two different distance measure-

ments for the globular cluster NGC 6624, 7.6 ± 0.4 kpc from
optical (Kuulkers et al. 2003) and 8.4 ± 0.6 kpc from near-IR
observations (Valenti et al. 2007). In the absence of any further
constraint on the distance to the cluster, we assume a box-car
probability distribution, allowing it to cover the range from 6.8
to 9.6 kpc, i,e.,

P (D)dD =
{ 1

∆D
if|D − D0| ! ∆D/2

0 otherwise,
(6)

based on the errors provided by each measurement.
The color correction factor that is obtained from modeling

the hot atmospheres of accreting, bursting neutron stars was
discussed in detail in Güver et al. (2010). The calculations show
that when the thermal flux is in the range between ≈ 1%–50%
sub-Eddington, the color correction factor shows little depen-
dence on surface gravity or temperature and asymptotes to a
well-determined value (e.g., Madej et al. 2004; also see Figure
11 in Güver et al. 2010). Because the color correction is applied
to spectra during the cooling tails of the bursts when the flux is
indeed significantly sub-Eddington, we adopt a color correction
factor of fc = 1.35 ± 0.05 that is appropriate for this regime
and accounts for the range of computed values. We, thus, take
a box-car probability distribution covering the range 1.3–1.4 so
that

P (fc)dfc =
{

1
∆fc

if|fc − fc0| ! ∆fc/2

0 otherwise,
(7)

where fc0 = 1.35 and ∆fc = 0.1 as stated above.
We use the electron scattering opacity κes = 0.20(1 + X) cm2

g−1, which depends on the hydrogen mass fraction X. There is
compelling evidence that the accreted material in 4U 1820−30
is either pure He or hydrogen poor (Nelson et al. 1986). We,
therefore, take the hydrogen mass fraction X to be 0 in this case.
Note that allowing the hydrogen mass fraction to vary between
X = 0.0 − 0.3 does not affect the final mass-radius contours
for this particular source because there are no consistent (M, R)
solutions for the larger X values.

The probability distribution over the neutron star mass and
radius can then be obtained by inserting each probability
distributions into Equation (3) and integrating over the distance
and the hydrogen mass fraction. Figure 7 shows the 1 and 2σ
confidence contours for the mass and the radius of the neutron
star in 4U 1820−30.

5. DISCUSSION

We used time-resolved X-ray spectroscopy of the ther-
monuclear bursts exhibited by the ultra-compact X-ray binary
4U 1820−30, in conjunction with the distance measurement to
its host globular cluster NGC 6624, to obtain a measurement
of the mass and radius of its neutron star. We present the re-
sulting 1 and 2σ confidence contours of the two-dimensional
probability density P(M, R) in Figure 7. The peak of the dis-

Figure 7. 1 and 2σ contours for the mass and radius of the neutron star in
4U 1820−30 are shown together with the predicted mass–radius relations for
a number of equation of states of neutron star matter. The representative mass-
radius relations for a select number of equations of state include multi-nucleonic
ones (A, FPS, UU, AP3), equations of state with condensates (GS1-2), strange
stars (SQM1, SQM3), and meson-exchange models (MS0). The black line
indicates the black hole event horizon. The descriptions of the various equations
of state and the corresponding labels can be found in Lattimer & Prakash (2001)
and Cook et al. (1994).
(A color version of this figure is available in the online journal.)

tribution and the projected 1σ errors correspond to a mass of
M = 1.58 ± 0.06 M⊙ and a radius of R = 9.11 ± 0.4 km.

Given the relatively large uncertainty in the source distance,
the small uncertainties in the measured mass and radius call for
an elucidation. The probability density over mass and radius is
found by Bayesian analysis, which assigns a probability to each
(M, R) pair based on the likelihood that the measured touchdown
flux and the apparent emitting area can be simultaneously
reproduced by that mass and radius pair, for a given distance.
In the case of 4U 1820−30, the likelihood drops rapidly
towards larger source distances, making the touchdown flux
and the apparent emitting area practically inconsistent with
each other, for any (M,R) pair. Thus, the smaller distance to
the globular cluster is a posteriori favored by the spectroscopic
data.

A mass measurement for the neutron star in 4U 1820−30 was
reported by Zhang et al. (1998) (see also Kaaret et al. 1999 and
Bloser et al. 2000) based on the measurement of the frequencies
of kHz QPOs from that source. In these studies, an apparent
flattening of the dependence of the upper kHz QPO frequency
on X-ray count rate was interpreted as evidence for the accretion
disk being truncated at the radius of the innermost stable circular
orbit. The frequency of the kHz QPO at that instant was equal
to ∼1060 Hz, which, if interpreted as a Keplerian frequency
at the inner edge of the accretion disk, resulted in a mass for
the neutron star of ≃2.2 M⊙. The interpretation of Zhang et al.
(1998) has been questioned later by Méndez et al. (1999), who
showed that the X-ray count rate is not a good indicator of
mass accretion rate onto the neutron star. The highest observed
QPO frequency from 4U 1820−30 can, therefore, only be used
to place an upper bound on the mass of the neutron star of
≃2.2 M⊙ (Miller et al. 1998), which is consistent with our mass
measurement.

4U 1820; Güver et al. ‘10
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Fig. 9.— (Left) The 68% confidence contours in mass and radius for the quiescent neutron star in ω Cen, inferred by Heinke et al.
(2014; H14) and by Guillot & Rutledge (2015; G15) using different assumptions regarding the interstellar extinction (wabs: Morrison &
McCammon 1983; tbabs: Wilms et al. 2000), the presence of a power-law spectral component, and for different distances to the globular
cluster (4.8 kpc vs. 5.3 kpc). (Right) The 68% and 95% confidence contours in mass and radius for the quiescent neutron star in NGC 6397,
assuming a helium atmosphere and marginalized over a range of distances with a flat prior distribution between 2.44-2.58 kpc.

ω

Fig. 10.— The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from (Left) all neutron
stars with thermonuclear bursts (Right) all neutron stars in low-mass X-ray binaries during quiescence.

XSPEC), where the wabs model (employed by Guillot et al. 2013) leads to somewhat larger radii for the same distance.
In the present study, we repeat the analysis of Guillot et al. (2013) individually for the sources in M13, M28,

NGC 6304, M30, and ωCen. (Note that for the last two sources, the observations were reported in Guillot & Rutledge
2014). In all of the spectral fits, we allow for a power-law component with a fixed photon index Γ = 1 but a free
normalization. We leave the hydrogen column density as a free parameter in the fits, but fix it at the most likely value
when calculating the posterior likelihoods over mass and radius. The best-fit spectral parameters for each source are
shown in Table 2. We also fold in distance uncertainties using a Gaussian likelihood for the distance to each source
with a mean and standard deviation given in Table 2.
For the neutron star in NGC 6397, we use the results of the helium atmosphere modeling reported in Heinke et

al. (2014) and marginalize the posterior likelihoods over the narrow range of distances with a flat prior distribution
between 2.44−2.58 kpc to incorporate this source of systematic uncertainty. We show the results of the spectral fit in
Table 2 and the corresponding limits in the mass-radius plane in the right panel of Figure 9.
We show the resulting posterior likelihoods over the mass and radius for all of the qLMXBs in Figure 10 and compare

them to the combined constraints from the X-ray bursters discussed earlier. There is a high level of agreement between
all of these measurements. Note that the smaller widths of the 68% confidence contours in a subset of the qLMXBs

includes 
rotational 

corrections
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Figure 1. Time resolved spectroscopy of two PRE X-ray bursts from 4U 1608–52 illustrating the differences between hard- and soft state X-ray bursts. In
panels a) and c), the black line shows the bolometric flux Fbb in units of 10−7 erg cm−2 s−1 (left-hand y-axis). The blue ribbon shows the 1σ limits of the
black body normalisation K = (Rbb[km]/d10)2 (inner right-hand y-axis). The red diamonds show the 1σ errors for black body temperature Tbb in keV
(outer right-hand y-axis). The first black vertical dashed line marks the time of touchdown ttd and the second vertical dashed line to the right shows the time
ttd/2 when Fbb has decreased to one half of the touchdown flux. The corresponding Fbb andK-values at these times Ftd, Ftd/2,Ktd andKtd/2 are marked
with dotted lines. The panels b) and d) show the relationship between the inverse square root of the black body radius (proportional to the colour-correction
factor fc) and the black body flux Fbb that is scaled using the mean touchdown flux ⟨Ftd⟩. The blue line is a model prediction for a pure hydrogen NS
atmosphere with a surface gravity of log g = 14.3, taken from Suleimanov et al. (2012). The atmosphere model is the same for both b) and d) panels and it is
shown here to illustrate how well (or poorly) it follows the observed data. Note that for this particular source Ftd is strongly variable between bursts making
the determination of FEdd non-unique. Note also that because of telemetry issues, there are gaps in the high time resolution data around Ftd that sometimes
make touchdown time ttd difficult to determine.

ria as Galloway et al. (2008) to check if the X-ray burst showed
signs of PRE (see Galloway et al. 2008, §2.3). If PRE was detected
we included the X-ray burst to the analysis presented in this paper.
However, during the analysis we had to exclude some bursts be-
cause of various technical reasons. For example, for 4U 1608–52
we excluded three bursts: one because ttd could not be determined
due to telemetry gaps during the burst peak (OBSID: 80406-01-04-
08), one because PRE was only marginal (OBSID: 70059-01-08-
00) and one anomalous, marginal PRE burst where the touchdown
occurs before the burst flux reaches the peak (OBSID: 94401-01-
25-02). Similarly for SAX J1808.4–3658 we had to exclude the ma-
jority of the bursts that were affected by data gaps. We also did not

analyse X-ray bursts that were observed during spacecraft slews,
nor the few cases where the PCA data mode was such that the de-
termination of background and persistent emission spectra were not
possible.

Altogether we analysed 246 PRE-bursts in our study (see Ta-
ble A1). The RXTE/PCA data were reduced with the HEASOFT
package (version 6.12) and response matrices were generated us-
ing PCARSP (11.7.1) task of this package. The time resolved spec-
tra were extracted from the Event-mode data using initial inte-
gration times of 0.25, 0.5, 1.0 or 2.0 seconds, depending on the
peak count rate of the burst (>6000, 6000–3000, 3000–1500, or
<1500 counts per second). Then each time the count rate after

Kajava et al. 14

expected 
fc(F)Tbb

accretion during tail important; 
see talks by Suleimanov, Nättilä



models do work for some bursts

14

The influence of accretion geometry on the spectral evolution during thermonuclear (type-I) X-ray bursts 3

Figure 1. Time resolved spectroscopy of two PRE X-ray bursts from 4U 1608–52 illustrating the differences between hard- and soft state X-ray bursts. In
panels a) and c), the black line shows the bolometric flux Fbb in units of 10−7 erg cm−2 s−1 (left-hand y-axis). The blue ribbon shows the 1σ limits of the
black body normalisation K = (Rbb[km]/d10)2 (inner right-hand y-axis). The red diamonds show the 1σ errors for black body temperature Tbb in keV
(outer right-hand y-axis). The first black vertical dashed line marks the time of touchdown ttd and the second vertical dashed line to the right shows the time
ttd/2 when Fbb has decreased to one half of the touchdown flux. The corresponding Fbb andK-values at these times Ftd, Ftd/2,Ktd andKtd/2 are marked
with dotted lines. The panels b) and d) show the relationship between the inverse square root of the black body radius (proportional to the colour-correction
factor fc) and the black body flux Fbb that is scaled using the mean touchdown flux ⟨Ftd⟩. The blue line is a model prediction for a pure hydrogen NS
atmosphere with a surface gravity of log g = 14.3, taken from Suleimanov et al. (2012). The atmosphere model is the same for both b) and d) panels and it is
shown here to illustrate how well (or poorly) it follows the observed data. Note that for this particular source Ftd is strongly variable between bursts making
the determination of FEdd non-unique. Note also that because of telemetry issues, there are gaps in the high time resolution data around Ftd that sometimes
make touchdown time ttd difficult to determine.

ria as Galloway et al. (2008) to check if the X-ray burst showed
signs of PRE (see Galloway et al. 2008, §2.3). If PRE was detected
we included the X-ray burst to the analysis presented in this paper.
However, during the analysis we had to exclude some bursts be-
cause of various technical reasons. For example, for 4U 1608–52
we excluded three bursts: one because ttd could not be determined
due to telemetry gaps during the burst peak (OBSID: 80406-01-04-
08), one because PRE was only marginal (OBSID: 70059-01-08-
00) and one anomalous, marginal PRE burst where the touchdown
occurs before the burst flux reaches the peak (OBSID: 94401-01-
25-02). Similarly for SAX J1808.4–3658 we had to exclude the ma-
jority of the bursts that were affected by data gaps. We also did not

analyse X-ray bursts that were observed during spacecraft slews,
nor the few cases where the PCA data mode was such that the de-
termination of background and persistent emission spectra were not
possible.

Altogether we analysed 246 PRE-bursts in our study (see Ta-
ble A1). The RXTE/PCA data were reduced with the HEASOFT
package (version 6.12) and response matrices were generated us-
ing PCARSP (11.7.1) task of this package. The time resolved spec-
tra were extracted from the Event-mode data using initial inte-
gration times of 0.25, 0.5, 1.0 or 2.0 seconds, depending on the
peak count rate of the burst (>6000, 6000–3000, 3000–1500, or
<1500 counts per second). Then each time the count rate after
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Figure 8. (a) Mass-radius constraints from the hard-state bursts of 4U 1608–52 for a distance of 5.8± 2.0 kpc assuming 1.2M⊙ < M <
3M⊙ and 0.74 < X < 1. The dark and light blue contours correspond to 90 and 68 per cent confidence limits for Fmin = Ftd/e. For
X ! 0.7 solutions lie below the mass shedding limit for a rotational frequency of 620 Hz marked by the black curve with downward
ticks. The dashed red contours are similar constraints for Fmin = 0.1Ftd. Solid green, blue and red curves correspond to the best-fitting
TEdd,∞ for the combined bursts (with Fmin = Ftd/e), assuming H, solar H/He ratio and He composition, respectively. The NS mass-
radius relations for several equations of state of cold dense matter that do not contradict the existence of 2M⊙ pulsars (Demorest et al.
2010; Antoniadis et al. 2013) are shown by pink curves. (b) Corresponding distributions of parameters from the analysis of the hard-
state bursts. The black and green histograms are the prior parameter distributions, and the blue and red histograms are the posterior
distributions of parameters that give a physical solution (see Appendix A) for Fmin = Ftd/e and Fmin = 0.1Ftd, respectively. For some
parameters there are two solutions, therefore the posterior distributions can exceed the prior one.

on the NS mass M > 1.2M⊙ thus puts the lower limit on the
distance D10 > D10,min =0.3 and 0.32 for X = 1 and 0.74,
respectively. The presented error contours are barely con-
sistent with the existing theoretical M–R relations and at
higher masses they are deviating even more (see Fig. 8(a)).
Thus, it is likely that the NS mass in 4U 1608–52 is not
much larger than the typically measured 1.4–1.5M⊙ . For
M ∈ [1.2, 1.5]M⊙ the distance has to lie in a rather narrow
range between 3.1 and 3.7 kpc.

If instead we follow the assumption of Güver et al.
(2010a) and introduce a sharp cut in the distance distribu-
tion at Dmin = 3.9 kpc, the size of the contours in Fig. 8 will
be significantly reduced. For example, for X = 1 the con-
tours will close at M > 1.9M⊙, which results in R > 15 km
(for M < 2.4M⊙), while for X = 0.74 similar constraints
are M > 1.6M⊙ and R > 16 km. It is clear that such a cut
in D would not produce realistic results for these bursts.

We note here that all the constraints obtained here are
based on NS atmosphere model for non-rotating stars. Be-
cause 4U 1608–52 rotates 620 times a second, the shape
of the NS is distorted and the emission cannot possibly be
spherically symmetric. Rapid rotation also boosts radiation
emitted along the equatorial plane and hardens the spec-
trum. Including effects of rapid rotation would reduce the
radius of the non-rotating NS determined from the cooling
tail method by about 10 per cent depending on the inclina-
tion (V. Suleimanov et al., in preparation).

3.3 Comparison to the soft-state bursts and the

touchdown method

Let us now take a look at the soft-state bursts. Because the
evolution of K−1/4 with flux does not follow the predicted
theoretical dependence, this theory cannot be used to get

fc and, therefore, it is meaningless to use these data to de-
termine NS parameters (using the cooling tail or any other
method). However, to demonstrate the main difference in
the NS mass-radius constraints from the hard- and the soft-
state bursts, we apple the touchdown method as was done
for 4U 1608–52 by Güver et al. (2010a).

First, for the touchdown method, we need to find the
black-body normalization in the cooling tail. Looking at
Fig. 5(b), we see that the typical value of K−1/4 is about
0.23, which translates to K ≈ 350. Second, the flux at
touchdown (which is assumed to be equal to the Edding-
ton flux FEdd) for most bursts is between 1.0 and 2.0,
with the average of about 1.6 × 10−7 erg cm−2 s−1 (see
stars in Fig. 5(b) and Table 1). These values are simi-
lar to those determined by Güver et al. (2010a): FEdd =
(1.541 ± 0.065) × 10−7 erg cm−2 s−1 and K = 324.6 ± 2.4
in the cooling tail, which we adopt for easier comparison.3

They correspond to TEdd,∞ = 2.14 × 107 K and the maxi-
mum possible distance D10,max = 0.405 at fc=1.4, X=0 and
central values for FEdd and K (see Equation (A13)). Taking
fc smaller and X larger decreases Dmax further. We note
here that in the hard-state bursts K is larger by a factor of
1.75, FEdd is smaller by 50 per cent and TEdd,∞ is smaller
by ∼30 per cent.

We now can use these observables to obtain the NS mass
and radius distribution. We follow here the assumptions by
Güver et al. (2010a): we take a uniform distribution of fc
between 1.3 and 1.4 (although the actual value for He at-
mosphere is closer to 1.5, see Suleimanov et al. 2012), and
assume a uniform distribution of the hydrogen fraction X

3 They have used bursts 1 and 8 from Table 1 for determination
of the touchdown flux and bursts 6, 7, 8 and one non-PRE burst
to measure the blackbody normalisation of the cooling tail.

c⃝ 2014 RAS, MNRAS 000, 1–13
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Figure 3. Predicted M–R relations for different EOS models and data inter-
pretations. Proceeding from back to front, the red contours and probability
distributions are for strange quark stars (EOS model E with no modifications
to the data). Next are green contours which correspond to the baseline model
(EOS model A with no modifications to the data set). The blue contours give
the results corresponding to model A with modification VIII (larger values of
fC), and the magenta results are those assuming a larger maximum mass to
accommodate a mass of 2.4 solar masses for B1957+20. Finally, the black lines
are the 10 Skyrme models from Stone et al. (2003) which are inconsistent with
the data because they imply that the radius of a 1.4 solar mass neutron star is
larger than 13 km.
(A color version of this figure is available in the online journal.)

no strong preference for either strange quark or hadronic stars;
however, model E predicts radii significantly less than 10 km
for low masses (!1.2 M⊙).

Our neglect of rotation is unlikely to affect our conclusions.
Rotation increases the radius at the equator and decreases
the radius at the poles, and this could be relevant for the
interpretation of some PRE X-ray bursts: the rotation rate of
4U 1608−522 is 619 Hz. However, for EOSs that are likely
to reproduce the observational data, this rotation rate increases
the radius by less than 10% (Weber 1999). This introduces
an uncertainty smaller than that due to variations in fC, which
we have already taken into account. The rotation rates for the
qLMXBs in our sample are unknown. Assuming that they are
similar to other qLMXBs, however, means that the effect of
rotation is smaller than that of their distance uncertainties.

The relationship between pressure and energy density
(Figure 2) that we determine from our baseline analysis from ob-
servations is consistent with effective field theory (Hebeler et al.
2010) and quantum Monte Carlo (Gandolfi et al. 2012; Steiner
& Gandolfi 2012) calculations of low-density neutron matter.
Note that these neutron matter results are incompatible with
the Suleimanov et al. (2010) interpretation of 4U 1724−307
(Suleimanov et al. 2011) which suggested exclusion of short
PRE bursts and qLMXBs M13 and ω Cen, also pointed out
by Hebeler et al. (2010). Our results are also consistent with
the high-density constraints on neutron matter from heavy-ion
collisions (Danielewicz et al. 2002). In order to infer the con-
straints on neutron star matter from the neutron matter con-
straints in Danielewicz et al. (2002), we performed a small phe-
nomenological correction for the small proton content using the
method in Steiner & Gandolfi (2012). Also, we should note that
the neutron matter constraints in Danielewicz et al. (2002) are
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Figure 4. Limits on the density derivative of the symmetry energy, L. The single-
hatched (red) regions show the 95% confidence limits and the double-hatched
(green) regions show the 68% confidence limits.
(A color version of this figure is available in the online journal.)

not model-independent, and depend on assumptions about the
high-density behavior of the nuclear symmetry energy.

Our results imply that over one-third of the modern Skyrme
models studied in Stone et al. (2003) are inconsistent with obser-
vations. Covariant field-theoretical models that have symmetry
energies that increase nearly linearly with density, such as the
model NL3 (Lalazissis et al. 1997), are also inconsistent with
our results, although they may still adequately describe isospin-
symmetric matter in nuclei.

Our models do not place effective constraints on the symmetry
parameter Sv , but do place significant constraints on the symme-
try energy parameter L; these are summarized in Figure 4. The
probability distribution for each model is renormalized to fix the
maximum probability at unity and is then shifted upward by an
arbitrary amount. The range that encloses all of the models and
modifications to the data is 43.3–66.5 MeV to 68% confidence
and 41.1–83.4 MeV to 95% confidence. The allowed values of
L are substantially larger for model C because this parameter-
ization more effectively decouples the low- and high-density
behaviors of the EOS.

Our preferred range for L is similar to that obtained from
other experimental and observational studies (Tamii et al. 2011;
Tsang et al. 2012; Steiner & Gandolfi 2012; Lattimer & Lim
2012) and experimental studies (e.g., Tsang et al. 2012; Tamii
et al. 2011). Our results suggest that the neutron skin thickness
of 208Pb (Typel & Brown 2000; Steiner et al. 2005) is less
than about 0.20 fm. This result is independent of the EOS
models (which include possible phase transitions) and data
modifications described above. It is compatible with experiment
(Horowitz et al. 2001) and also with measurements of the dipole
polarizability of 208Pb (Reinhard & Nazarewicz 2010).

While we have endeavored to take into account some sys-
tematic uncertainties in our analysis, we cannot rule out correc-
tions due to the small number of sources and to possible drastic
modifications of the current understanding of low-mass X-ray
binaries. Nevertheless, it is encouraging that these astrophysical
considerations agree not only with nuclear physics experiments
but also with theoretical studies of neutron matter at low densi-
ties and heavy-ion experiments at higher densities.

4
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Table 1
Limits for the Radius of a 1.4 Solar Mass Neutron Star for All of the Models Considered in This Work

EOS Model Data Modifications R95%> R68%> R68%< R95%<

(km) (km) (km) (km)

Variations in the EOS model

A (2 polytropes) · · · 11.18 11.49 12.07 12.33
B (2 polytropes) · · · 11.23 11.53 12.17 12.45
C (line segments) · · · 10.63 10.88 11.45 11.83
D (hybrid w/quarks) · · · 11.44 11.69 12.27 12.54

Variations in the data interpretation

A I (high fC) 11.82 12.07 12.62 12.89
A II (low fC) 10.42 10.58 11.09 11.61
A III (redshifted photosphere) 10.74 10.93 11.46 11.72
A IV (without X7) 10.87 11.19 11.81 12.13
A V (without M13) 10.94 11.25 11.88 12.22
A VI (no PREs) 11.23 11.56 12.23 12.49
A VII (no qLMXBs) 11.17 11.96 12.47 12.81
Global limits · · · 10.42 10.58 12.62 12.89

More extreme scenarios

C (line segments) II (low fC) 9.17 9.34 9.78 10.07
A (2 polytropes) VIII (Mmax > 2.4) 12.14 12.29 12.63 12.81
E (bare quark star) · · · 10.19 10.64 11.57 12.01

Scenario motivated by Suleimanov et al. (2011)

A (2 polytropes) IX (see the text) 12.35 12.83 13.61 13.92

Note. Model A and the assumption 1.33 < fC < 1.47 for the PRE sources are assumed unless specified otherwise.
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Figure 1. Comparison of the predicted M–R relation with the observations.
The shaded regions outline the 68% and 95% confidences for the M–R relation;
these include variations in the EOS model and the modifications to the data
set (see Table 1) but not the more extreme scenarios. The lines give the 95%
confidence regions for the eight neutron stars in our data set.
(A color version of this figure is available in the online journal.)

the short PRE bursts and the qLMXBs M13 and ω Cen not
be considered because of modifications to their spectra due to
accretion (Suleimanov et al. 2011). On the other hand, Güver
et al. (2012) find that the long PRE burst of 4U 1724 does not
fit modern atmosphere models as well as short bursts from the
same source. A full resolution of this discrepancy is outside the
scope of this work and may require more observational data to
fully understand PRE bursts. Nevertheless, we have attempted
to cover the most likely scenarios.
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Figure 2. Predicted pressure as a function of baryon density of neutron star
matter as obtained from astrophysical observations. The region labeled “NS
68%” gives the 68% confidence limits and the region labeled “NS 95%” gives the
95% confidence limits. Results for neutron star matter from effective field theory
(Hebeler et al. 2010; see inset), from quantum Monte Carlo (Gandolfi et al.
2012), and from constraints inferred from heavy-ion collisions (Danielewicz
et al. 2002) are also shown for comparison.
(A color version of this figure is available in the online journal.)

While we are able to significantly constrain the P –ε relation,
determination of the composition of neutron star cores is not
yet possible. To probe the core composition, we consider EOS
model E, which describes the entire star by the high-density
quark matter EOS used in model D, i.e., a self-bound strange
quark star. In the mass range 1.4–2 solar masses, the radii are not
significantly different from our baseline model so that there is

3

NB. Rnp = 0.15±0.02 fm
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Figure 3. Predicted M–R relations for different EOS models and data inter-
pretations. Proceeding from back to front, the red contours and probability
distributions are for strange quark stars (EOS model E with no modifications
to the data). Next are green contours which correspond to the baseline model
(EOS model A with no modifications to the data set). The blue contours give
the results corresponding to model A with modification VIII (larger values of
fC), and the magenta results are those assuming a larger maximum mass to
accommodate a mass of 2.4 solar masses for B1957+20. Finally, the black lines
are the 10 Skyrme models from Stone et al. (2003) which are inconsistent with
the data because they imply that the radius of a 1.4 solar mass neutron star is
larger than 13 km.
(A color version of this figure is available in the online journal.)

no strong preference for either strange quark or hadronic stars;
however, model E predicts radii significantly less than 10 km
for low masses (!1.2 M⊙).

Our neglect of rotation is unlikely to affect our conclusions.
Rotation increases the radius at the equator and decreases
the radius at the poles, and this could be relevant for the
interpretation of some PRE X-ray bursts: the rotation rate of
4U 1608−522 is 619 Hz. However, for EOSs that are likely
to reproduce the observational data, this rotation rate increases
the radius by less than 10% (Weber 1999). This introduces
an uncertainty smaller than that due to variations in fC, which
we have already taken into account. The rotation rates for the
qLMXBs in our sample are unknown. Assuming that they are
similar to other qLMXBs, however, means that the effect of
rotation is smaller than that of their distance uncertainties.

The relationship between pressure and energy density
(Figure 2) that we determine from our baseline analysis from ob-
servations is consistent with effective field theory (Hebeler et al.
2010) and quantum Monte Carlo (Gandolfi et al. 2012; Steiner
& Gandolfi 2012) calculations of low-density neutron matter.
Note that these neutron matter results are incompatible with
the Suleimanov et al. (2010) interpretation of 4U 1724−307
(Suleimanov et al. 2011) which suggested exclusion of short
PRE bursts and qLMXBs M13 and ω Cen, also pointed out
by Hebeler et al. (2010). Our results are also consistent with
the high-density constraints on neutron matter from heavy-ion
collisions (Danielewicz et al. 2002). In order to infer the con-
straints on neutron star matter from the neutron matter con-
straints in Danielewicz et al. (2002), we performed a small phe-
nomenological correction for the small proton content using the
method in Steiner & Gandolfi (2012). Also, we should note that
the neutron matter constraints in Danielewicz et al. (2002) are
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Figure 4. Limits on the density derivative of the symmetry energy, L. The single-
hatched (red) regions show the 95% confidence limits and the double-hatched
(green) regions show the 68% confidence limits.
(A color version of this figure is available in the online journal.)

not model-independent, and depend on assumptions about the
high-density behavior of the nuclear symmetry energy.

Our results imply that over one-third of the modern Skyrme
models studied in Stone et al. (2003) are inconsistent with obser-
vations. Covariant field-theoretical models that have symmetry
energies that increase nearly linearly with density, such as the
model NL3 (Lalazissis et al. 1997), are also inconsistent with
our results, although they may still adequately describe isospin-
symmetric matter in nuclei.

Our models do not place effective constraints on the symmetry
parameter Sv , but do place significant constraints on the symme-
try energy parameter L; these are summarized in Figure 4. The
probability distribution for each model is renormalized to fix the
maximum probability at unity and is then shifted upward by an
arbitrary amount. The range that encloses all of the models and
modifications to the data is 43.3–66.5 MeV to 68% confidence
and 41.1–83.4 MeV to 95% confidence. The allowed values of
L are substantially larger for model C because this parameter-
ization more effectively decouples the low- and high-density
behaviors of the EOS.

Our preferred range for L is similar to that obtained from
other experimental and observational studies (Tamii et al. 2011;
Tsang et al. 2012; Steiner & Gandolfi 2012; Lattimer & Lim
2012) and experimental studies (e.g., Tsang et al. 2012; Tamii
et al. 2011). Our results suggest that the neutron skin thickness
of 208Pb (Typel & Brown 2000; Steiner et al. 2005) is less
than about 0.20 fm. This result is independent of the EOS
models (which include possible phase transitions) and data
modifications described above. It is compatible with experiment
(Horowitz et al. 2001) and also with measurements of the dipole
polarizability of 208Pb (Reinhard & Nazarewicz 2010).

While we have endeavored to take into account some sys-
tematic uncertainties in our analysis, we cannot rule out correc-
tions due to the small number of sources and to possible drastic
modifications of the current understanding of low-mass X-ray
binaries. Nevertheless, it is encouraging that these astrophysical
considerations agree not only with nuclear physics experiments
but also with theoretical studies of neutron matter at low densi-
ties and heavy-ion experiments at higher densities.
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Fig. 13.— The mass-radius relation (solid blue curve) corresponding to the most likely triplet of pressures that agrees with all of the
neutron star radius and low energy nucleon-nucleon scattering data and allows for a > 1.97 M⊙ neutron star mass. The range of mass-
radius relations (light blue band) corresponds to the region of the (P1, P2, P3) parameter space in which the likelihood is within e−1/2 of
its highest value.

two-body interaction potential obtained at low densities excludes the gray region labeled 2NI. The most likely value,
as well as the entire region within the highest posterior likelihood, are, in fact, lower than the pressure predicted by
most equations of state at that density, as shown in the lower panel (see Read et al. 2009 for the acronyms and the
references for the various equations of state). We also include in this figure the recent equation of state labeled NJL
(Kojo et al. 2015), based on a smooth interpolation in pressure vs. baryon chemical potential of a nucleonic equation
of state (APR) at densities below ∼ ρns with a quark matter equation of state at densities above ∼ 5− 7ρns.
The combination of P2 and P3, on the other hand, is constrained by the maximum mass requirement: a lower value

of P2 pushes P3 to be as high as possible within the causality limit, whereas for moderate to high values of P2, which
already lead to M-R relations that allow high mass stars and are consistent with the radius measurements, the allowed
range of P3 extends to lower values. The combination of P2 and P3 exclude to high confidence the stiff equations of
state such as MPA1 and MS1, which produce radii that are too large (see also their inconsistency with P1 in the lower
panel). This combination also excludes equations of state with condensates, such as GS1, with pressures that are too
low to be consistent with the maximum mass requirement.
Figure 12 shows that the combination of the radius measurements with the low density experimental data and the

requirement of a ∼ 2 M⊙ maximum mass pins down the parameters of the equation of state extremely well across
a wide range of supranuclear densities and points to a preferred equation of state that is somewhat softer than the
nuclear equation of state AP4 (a version of the APR equation of state). To see this on the mass-radius plane, we also
show in Figure 13 the mass-radius relation corresponding to the most likely triplet of pressures as well as the range of
mass-radius relations for the region of the (P1, P2, P3) parameter space with the highest likelihood. We limit the range
of masses in this figure to ≤ 2.2 M⊙ because of the absence of any data to constrain the relation at higher masses. As
expected from the above discussion, the preferred mass-radius relation lies to the left of most model predictions and
is closest to AP4, especially at low masses, where the main uncertainty in AP4 is in the strength of the three-nucleon
interactions. It also rises along a nearly constant radius in order to reach the ∼ 2 M⊙ limit.

6. CONCLUSIONS

We performed a comprehensive study of spectroscopic radius measurements of neutron stars using thermonuclear
bursters and quiescent low-mass X-ray binaries. We included a number of corrections to the mass-radius inference
that have recently been calculated, incorporated systematic uncertainties in the measurements, and employed new
statistical tools to map the observed quantities to neutron star masses and radii and the latter to the neutron star
equation of state.
Using a total of twelve sources allows us to place strong and quantitative constraints on the properties of the equation

of state between ≈ 2 − 8 times the nuclear saturation density, even though the individual measurements themselves
do not have the precision to lead to tight constraints. We find that around M = 1.5 M⊙, the preferred equation of
state predicts a radius of 10.8+0.5

−0.4 km. When interpreting the constraints on the pressure at 1.85 ρns in the context of
an expansion in terms of few-body potentials (see, e.g., Akmal et al. 1998; Pieper et al. 2001; Gandolfi et al. 2012),
our results suggest a weaker contribution of the three-body interaction potential than previously considered. In the
framework of quark matter equations of state, the inferred lower pressure at 1.85 ρns is strongly suggestive of an

Steiner et al. ‘13
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Figure 17. Figure showing the constraint on the dEoS imposed by the radius measurement obtained in this work: RNS = 9.1+1.3
−1.5 km (90%-confidence). The dark and

light shaded areas show the 90%-confidence and 99%-confidence constraints of the RNS measurement, respectively. The mass measurement of PSR J1614−2230 is
shown as the horizontal band (Demorest et al. 2010). “Normal matter” EoSs are the colored solid lines. Other types of EoSs, such as the hybrid or quark-matter EoSs
are included for comparison, with dashed lines. As mentioned in Section 5, the present analysis only places constraints on the “normal matter” EoSs since they are the
only family of EoSs included in our assumptions. Among them, only the very soft dEoSs (such as WFF1; Wiringa et al. 1988) are consistent with the radius obtained
here. The EoS are obtained from Lattimer & Prakash (2001, 2007).
(A color version of this figure is available in the online journal.)

(Heinke et al. 2006), supporting stiff dEoSs, such as MS0/2
(Müller & Serot 1996). Nonetheless, the range of radii allowed
by the published MNS–RNS contours for X7 is consistent with the
radius measurement presented in the present work. Moreover,
the X7 MNS–RNS contours are compatible with the dEoS WFF1
(Wiringa et al. 1988). Another work used the long photospheric
radius expansion X-ray bursts from 4U 1724-307 to conclude
that stiff dEoSs are describing the dense matter inside NSs
(Suleimanov et al. 2011a). Specifically, it was found that
RNS > 13.5 km for MNS < 2.3 M⊙, and for a range for
NS atmospheric composition. Lower RNS values, in the range
10.5–17 km, are allowed for MNS > 2.3 M⊙, for pure H or
solar metallicity composition. This radius measurement is only
marginally consistent with the present work for large masses,
MNS > 2.3 M⊙, which implies a dEoS capable of reaching
MNS ∼ 2.3 M⊙ for RNS ∼ 10–11 km. Finally, another radius
measurement, obtained by modeling the thermal pulses of the
millisecond pulsar PSR J0437−4715 (Bogdanov 2013), led to
values, RNS > 11 km (3σ ), is inconsistent with the measurement
presented in our work.

6. SUMMARY

In this paper, we measured RNS using the assumption that
the radius is quasi-constant for a wide range of MNS larger than
MNS > 0.5 M⊙, i.e., constant within the measurement precision.
This is justified by recent observations favoring “normal matter”
dEoSs which are described by this characteristic. For this
analysis, the spectra from five GCs qLMXBs observed with
the Chandra X-Ray Observatory and XMM-Newton were used
in a simultaneous analysis, constraining RNS to be the same for
all targets.

For this, we used an MCMC approach to spectral fitting,
which offers several advantages over the Levenberg–Marquardt
χ2-minimization technique generally used for spectral fits. For
example, the MCMC framework allows imposing Bayesian
priors to parameters, namely the distance to the host GCs.

By doing do, the distance uncertainties are included into the pos-
terior RNS distribution. In addition, one can marginalize the pos-
terior distributions over any parameters and very easily obtain
MNS–RNS distributions, while the grid-search method in XSPEC
can be problematic in the case of spectral fits with many free
parameters and complicated χ2-space. The algorithm chosen in
this work is an affine-invariant ensemble sampler, commonly
called “Stretch-Move” algorithm, which is particularly appro-
priate (i.e., converging efficiently) for elongated and curved
distributions.

The principal result of the simulations performed in this anal-
ysis is that NSs are characterized by small physical radii. Specif-
ically, when the distances and Galactic absorption parameters
are fixed, RNS = 7.1+0.5

−0.6 km (from Run 1). A more general pos-
terior distribution for RNS, i.e., less prone to systematic biases,
is obtained by applying Gaussian Bayesian priors for the five
GC distance, by freeing the NH parameters, and by adding a
PL component to the model to account for a possible spectral
component at high photon energies. Such a spectral component
could be the largest possible source of uncertainty, and could be
skewing RNS downward, but it is accounted for in the last and
most relaxed MCMC run. In fact, such a spectral component
was discovered herein for NGC 6397.

The progressive relaxation of assumptions led us to a good
understanding of the spectral fit in Run 7, minimizing sys-
tematic uncertainties. Therefore, with the H-atmosphere model
nsatmos, the measured NS radius is RNS = 9.1+1.3

−1.5 km (from
Run 7). These results are compatible with other low-RNS mea-
surements from GC qLMXBs or type-I X-ray bursts, but not
consistent with some published RNS measurement leading to
values RNS > 11 km. We recommend these RNS constraints,
from Run 7, be those relied upon for constraints on the dEoS
and other nuclear physics model parameters, as this run has the
fewest associated assumptions behind it.

Among the dEoS listed in previous works (Lattimer &
Prakash 2001, 2007), the RNS measurement presented here is
only compatible with “normal matter” dEoSs consistent with
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FIG. 13. Neutron star mass (in solar mass units,
MO =1.99X 10' g) as a function of central mass density c, for
AV14 plus UVII (solid line), UV14 plus VVII (dash-dotted line),
and UV14 plus TNI (dashed line). Also shown are the TI model
(short-dashed line) and Pandharipande hyperon PA (long-
dashed line). The solid line at 1.55 Mo represents the lower
mass limit from x-ray pulsar 4U0900-40.

The gravitational mass as a function of stellar radius
MG{R) is shown in Fig. 14. Constraints on the mass-
radius relation have been obtained from the study of x-
ray burst sources. These are neutron stars in binary sys-
tems with weak magnetic fields that accrete matter from
their companions. The accreted matter can burn in a
thermonuclear flash, producing a burst of x rays.
Theoretical models of the process reproduce observed

processes fairly well, and give a Inass-radius relation for
the star. In the case of the source MXB 1636-536, a
second mass-radius relation is obtained by observing a
gravitational and transverse Doppler red-shifted spectral
feature, leading to a unique solution for the mass and ra-
dius: 1.45 M& and 10.3 km with errors of +10%. The
error box for this value is shown in Fig. 14. The three
models studied here all pass through the box, but some
very stiff and some very soft EOS pass outside and are po-
tentially ruled out.
Another source of information on neutron star struc-

ture is the observation of red-shifted pair annihilation
lines in gamma-ray bursts. " Some 39 gamma-ray burst
events with emission features have been recorded, with
most clustered in the redshift range z=0.25-0.35. As-
suming the sources are neutron stars in the mass range
indicated for x-ray pulsars, we get the box shown in Fig.
15, where MG{z) is plotted. Again, the present models
pass through the box, while very stiff and very soft EOS
are potentially ruled out.
One feature of young radio pulsars, such as the Crab

and Vela pulsars, is the occurrence of glitches {sudden in-
creases in the rotation rate) followed by a comparatively
long relaxation process. A detailed theory based on the
superfluid properties of nucleons in the star has been con-
structed to fit these observations. This vortex creep
theory describes the motion of pinned vortex lines in the
crustal superfluid and fits to the observational data pro-
vide constraints on the proportion of the star that is
crust. The data argue for a relatively large crust and cor-
respondingly stiff EOS, probably stiffer than the models
studied here. The identification of a 35-d periodicity in
the x-ray source Her X-1 as a large amplitude free preces-
sion of the magnetic dipole axis of the neutron star has
also been used as an argument for a relatively large crust
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FIG. 14. Neutron star mass as a function of star radius for
AV14 plus UVII (solid line), AV14 plus UVII (dash-dotted line),
and UV14 plus TNI (dashed line). Also shown are the TI model
(short-dashed line) and PA model (long-dashed line). The box
brackets a determination of the mass and radius for the x-ray
source MXB 1636-536.

FIG. 15. Neutron star mass as a function of redshift for
AV14 plus UVII (solid line), UV14 plus UVII (dash-dotted line),
and UV14 plus TNI (dashed line). Also shown are the TI model
(short-dashed line) and PA model (long-dashed line). The box
brackets observed mass limits from x-ray pulsars and redshift
limits from gamma-ray burst sources.
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3
TF(p, x)=— (3m p) [x +(1—x) ]5 2m

(6.2) I I I I I 1 l 1 I I ] t ] I I

is the Fermi-gas kinetic energy. The functions Vp(p) and
Vz(p) are simply obtained once the results of symmetric
nuclear matter (x=—,') and pure neutron matter (x =0)
calculations are available. The values of Vo and V2 for
AV14 plus UVII, UV14 plus UVII, and UV14 plus TNI
are given in Table IV.
In this work we have not checked numerically whether

the presence of V;~k alters this result, but simple. analysis
of the contributing diagrams suggest that it will continue
to be valid. The V;".k part of UVII should not have any
effect on the approximation because it is isospin indepen-
dent.
The symmetry energy of nuclear matter is

E,(p)=— 2 9'TF(P~——2)+ Vq(p) .1 8 E(p,x)
x= l/2

(6.3)

Kp(x)pp(x) pP= [ur—1], u =
9y '

pp(x)
(6 4)

The symmetry energy for the five Hamiltonians is shown
in Fig. 8. The addition of Vjk increases the symmetry
energy by 10% at fixed density. The value obtained from
semiempirical mass fits ranges from 30 to 38 MeV at
p„, and the models with three-nucleon interaction are at
the lower end of this range.
The collapse of the iron core of a massive star takes

place at a proton fraction x =—,
' for which the saturation

properties of matter are significantly altered from their
symmetric values. In computer simulations by Baron,
Cooperstein, and Kahana (BCK) the success of a
prompt shock mechanism for the supernova is very sensi-
tive to this change. They have used the simple parame-
trization for the pressure P of the T=0 EOS:

80- UVI4+UV I I
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LU 40-

20-

0 I I I I [ ] I I I il I I I I I

0 0.2 0.4 0.6 0.8 ~,0 I.2 l.4
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FIG. 8. Symmetry energy E,(p) is shown for AV14 (long-
dashed line), UV14 (short-dashed line), AV14 plus UVII (solid
line), UV14 plus VVII (dash-dotted line), and UV14 plus TNI
(dashed line).

where y is the high-density adiabatic index and the varia-
tion of the compression modulus and saturation density
with proton fraction is taken as

Kp(x) =Kp[1—2(1—2x) ),
pp(x)=pp[1 ——', (1—2x) ] .

(6.5)

We have used Eq. (6.1) and Table IV to calculate the
energy for our models at x =—,'. They change from the
values given in Table I to: Ep( —,' ) =—9.1 MeV at
pp( —,')=0. 178 fm with Kp( —,')=158 MeV for AV14 plus
UVII, and to Ep( —,')=—8.3 MeV at pp( —,')=0. 156 fm

TABLE IV. CoeScients in MeV for interpolation to arbitrary proton fraction for Hamiltonians with
three-nucleon interaction.

p (fm ')
AV14 plus VVII
Vo Vq

UV14 plus UVII
Vo V2

UV14 plus TNI
Vo V2

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

—20.47
—22.36
—25.80
—29.60
—32.92
—35.71
—38.02
—41.20
—42.68
—42.93
—42.11
—36.14
—24.2
—5.7
25.6
114.0
279.0
507.0

8.74
9.59
11.05
12.64
14.05
15.32
16.44
16.88
15.88
15.10
14.68
14.07
16.9
20.9
20.3
15.6
3.0

—26.0

—20.27
—22.15
—25.58
—29.31
—32.43
—34.96
—36.91
—39.19
—39.32
—37.72
—34.68
—22.75
—3.0
25.1
62.1
169.3
365.0
619.0

9.51
10.30
11.81
13.58
15.22
16.76
18.18
20.64
21.90
22.73
24.48
27.37
30.5
35.6
39.5
39.9
21.0
—19.0

—23.97
—26.34
—30.50
—34.63
—37.70
—39.86
—41.26
—42.36
—41.64
—39.66
—36.44
—24.28
—6.9
16.9
50.2
126.7
234.0
354.0

11.68
12.69
14.43
16.08
17.13
17.78
18.11
18.18
17.62
16.87
15.92
11.69
6.2
—1.9
—16.8
—44.9
—78.0
—117.0

Wiringa, Fiks, & Fabrocini 1988
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TABLE V. Proton fraction and energy in MeV/nucleon of beta-stable matter (neutrons, protons,
electrons, and muons) for three Hamiltonians.

p (fm )

AV14 plus VVII
x(p) E(p,x)

UV14 plus UVII
x(p) E(p, x)

UV14 plus TNI
x(p) E(p,x)

0.07
0.08
0.10
0.125
0.15
0.175
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
1.00
1.25
1.50

0.017
0.019
0.023
0.027
0.031
0.036
0.044
0.051
0.051
0.052
0.055
0.060
0.077
0.099
0.101
0.094
0.066
0.014

7.35
7.94
8.97
10.18
11.43
12.74
14.12
16.96
20.48
24.98
30.44
45.15
66.4
93.6
132.1
233.0
410.0
635.0

0.019
0.021
0.025
0.030
0.035
0.042
0.052
0.069
0.079
0.087
0.097
0.116
0.132
0.155
0.172
0.177
0.122
0.026

8.13
8.66
9.70
11.06
12.59
14.18
15.92
20.25
25.78
32.60
40.72
61.95
90.2
126.2
170.5
291.1
501.0
753.0

0.026
0.029
0.033
0.037
0.042
0.047
0.051
0.057
0.059
0.060
0.060
0.051
0.039
0.023
0.005
0.0009
0
0

5.95
6.06
6.40
7.17
8.27
9.70
11.55
16.29
22.19
28.94
36.60
56.00
79.2
106.1
135.5
200.9
294.0
393.0

phenomenon is due primarily to the greater short-range
repulsion in isospin singlet nucleon pairs compared to
isospin triplet pairs. At high density this short-range
repulsion must dominate and pure neutron matter is
favored. At intermediate densities the strong isospin
singlet tensor potential and correlations serve to keep the
isospin singlet pairs, and thus symmetric nuclear matter,
more attractive than pure neutron rnatter. The presence
of V;k increases the tensor correlations and the attrac-
tion of the tensor forces, and thus delays the onset of the
pure isospin triplet regime.

VII. NEUTRON STARS

e(p)=p[E(p)+mc ],
p( ) 2 Ep (7.2)

Bp

The equation of state P(e) is obtained by eliminating p

(7.1)

Neutron star structure is calculated here using the
equation of state P(e) for beta-stable matter for p) 0.08
fm . The mass density e(p) and pressure P(p) are ob-
tained from the E(p, x ) of Table V:
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FIG. 11. Proton fraction x (p) is shown for beta-stable matter
with electrons and muons (upper curves) and electrons only
(lower curves) for AV14 plus UVII (solid lines), UV14 plus
UVII (dash-dotted lines), and UV14 plus TNI (dashed lines).

FIG. 12. Beta-stable matter (n,p, e,p) mass density c(p), pres-
sure P(p), and sound velocity s(p) (in units of c, right-hand
scale) are shown for AV14 plus UVII (solid lines), UV14 plus
UVII (dash-dotted lines), and UV14 plus TNI (dashed lines).
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MAXI J0556-332: A rapidly accreting hot 
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TABLE 7
FITS TO COOLING CURVES WITH AN EXPONENTIAL DECAY TO A CONSTANTa

Source τ (days) A (eV) B (eV) Data References
MAXI J0556–332 161±5 151±2 184.5±1.5 this work (model I)

197±10 137±2 174±2 this work (model II)
IGR J17480–2446 157±62 21.6±4 84.3±1.4 Degenaar et al. (2013)
EXO 0748–676 172±52 18±3 114.4±1.2 Degenaar et al. (2014)
XTE J1701–462 230±46 35.8±1.4 121.9±1.5 Fridriksson et al. (2011)
KS 1731–260 418±70 39.8±2.3 67.7±1.3 Cackett et al. (2010a)
MXB 1659–29 465±25 73±2 54±2 Cackett et al. (2008)

a kT∞eff(t) = A×e−t/τ +B, where t is time since the end of the outburst in days.

below our estimated distance range (e.g., 20 kpc) we find
temperatures (134–218 eV for model I and 131–195 eV for
model II) that are substantially higher than those observed in
XTE J1701–462 during its first∼500 days (125–163 eV). The
short cooling timescale observed inMAXI J0556–332 implies
a high thermal conductivity of the crust, similar to the other
cooling neutron stars that have been studied.
Given the similarities between the outbursts of MAXI

J0556–332 and XTE J1701–462, it is interesting to compare
these two systems in more detail, as it may help us under-
stand what causes the neutron-star crust in MAXI J0556–332
to be so hot. MAXI J0556–332 was in outburst for ∼480
days with a time-averaged luminosity of ∼1.7×1038(d45)2
erg s−1, while XTE J1701–462 was in outburst for∼585 days
with a time-averaged luminosity ∼2.0×1038(d8.8)2 erg s−1
(Fridriksson et al. 2010). The total radiated energies of the
MAXI J0556–332 and XTE J1701–462 outbursts are there-
fore 7.1×1045(d45)2 erg and 1.0×1046(d8.8)2 erg, respec-
tively. Despite the fact that the radiated energies and time-
averaged luminosities of the two systems are comparable, the
initial luminosity of the thermal component (which reflects
the temperature at shallow depths in the crust at the end of the
outburst) is an order of magnitude higher in MAXI J0556–
332 than in XTE J1701–462. This suggests the presence of
additional shallow heat sources in the crust of MAXI J0556–
332 and/or that the shallow heat sources in MAXI J0556–332
were more efficient per accreted nucleon.
The high observed temperatures are difficult to explain with

current crustal heating models. Bringing the initial tempera-
tures down to those seen in XTE J1701–462 requires a dis-
tance of ∼10–15 kpc (depending on the assumed model).
Such distances are problematic for several reasons. First it
implies that Z source behavior in MAXI J0556–332 is ob-
served at much lower luminosities (by factors of 9 or more)
than in other Z sources. Second, fits to the quiescent spec-
tra with such a small distance are of poor quality. Finally, a
smaller distance does not solve the fact that crustal heating ap-
pears to have been much more efficient per accreted nucleon
than in other sources. A reduction in distance by a factor of 3
results in a reduction in luminosity and presumably then, by
extension, the total mass accreted onto the neutron star and
total heat injected into the crust by a factor of 9. Given that
we inferred ∼30% less mass accreted onto the neutron star in
MAXI J0556–332 during its outburst than in XTE J1701–462
for our preferred distance of ∼45 kpc, this would mean ∼13
times less mass accreted onto MAXI J0556–332 than XTE
J1701–462 yet similar initial temperatures.
The nsamodel that we used to fit the thermal emission from

the neutron star in MAXI J0556–332 did not allow us to ex-
plore values of the neutron-star parameters other than Mns =
1.4M⊙ and Rns = 10 km, as these parameters are advised to
remain fixed at those values (Zavlin et al. 1996). While other
neutron-star atmosphere models allow for changes inMns and
Rns, none of the available models are able to handle the high
temperatures observed during the first ∼200 days of quies-
cence. It is, of course, possible that the properties of the
neutron star in MAXI J0556–332 are significantly different
from those in the other cooling neutron-star transients that
have been studied. Lower temperatures would be measured
if one assumed a lower Mns and/or a larger Rns. To estimate
the effects of changes in neutron-star parameters we used the
nsatmosmodel to fit the spectrum of observation 11, initially
assuming Mns = 1.4M⊙ and Rns =10 km. While keeping the
distance from this fit fixed, and changing Mns to 1.2M⊙ and
Rns to 13 km (values that are still reasonable), the measured
temperature was reduced by only ∼10%. Such changes are
not large enough to reconcile the temperatures measured in
MAXI J0556–332 with those of the other sources.
An alternative explanation for the high inferred tempera-

tures could be that part of the quiescent thermal emission is
caused by low-level accretion. Indications for low-level ac-

FIG. 5.— Evolution of the effective temperature of the quiescent neutron
star in MAXI J0556–332, based on fits with model II (purple stars). Temper-
ature data for five other sources are shown as well. The solid lines represent
the best fits to the data with an exponential decay to a constant. See Table 7
for fit parameters and data references.

cf. talk by Wijnands



Electron capture/β– decay cycles are not required to fit light 
curve

26

Deibel et al., 2014

lightcurves computed with open-source code 
https://github.com/nworbde/dStar

Consistent with 
recent measurements 
of A = 56 masses; 
Meisel & Schatz

https://github.com/nworbde/dStar


Facility for Rare Isotope Beams
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search for gs-gs pairs 

charge exchange for transition 
strength 

proposed NSCL 61V β– decay study

fusion reactions towards n-rich nuclei 
ANL fusion measurements

mass measurements 
completed NSCL TOF



In summary—
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F00ð!Þ ¼ "ð"$ 1Þb!"$2 $ ð2=9Þc!$4=3 þ ð10=9Þd!$1=3:

(4)

Given a fixed c and d one can write

½Fð!Þ=!' ¼ aþ b!"$1 þ Að!Þ (5)

and

F0ð!Þ ¼ aþ b"!"$1 þ Bð!Þ; (6)

where

Að!Þ ¼ c!$1=3 þ d!2=3 (7)

and

Bð!Þ ¼ ð2=3Þc!$1=3 þ ð5=3Þd!2=3: (8)

These equations provide the results needed to obtain a
and b in terms of Fð!oÞ and F0ð!oÞ at a fixed point ! ¼ !o,

b ¼ F0ð!oÞ $ ½Fð!oÞ=!o' þ Að!oÞ $ Bð!oÞ
ð"$ 1Þ!"$1

o

; (9)

and

a ¼ ½Fð!oÞ=!o' $ b!"$1
o $ Að!oÞ: (10)

It is conventional to define the value and derivatives at
!om ¼ 0:16 fm$3 with J ¼ Fð!omÞ, L ¼ 3!omF

0ð!omÞ
and K ¼ 9!2

omF
00ð!omÞ.

There are two independent EOS, one for the SNM EOS,
Fm ¼ ðE=AÞ with cm ¼ 75 MeV fm2, and another for the
neutron EOS, Fn ¼ ðE=NÞ with cn ¼ 119 MeV fm2 (the
values for c are from the Fermi-gas model). From these two
functions one obtains the symmetry energy, S ¼ Fsym ¼
Fn $ Fm, with asym ¼ an $ am, etc. J and L are usually
associated with Fsym; although they can be also be applied
to Fm and Fn (e.g., Jsym ¼ Jn $ Jm). The equations above
provide analytical forms for the correlations between a, b,
d, ", J, L, K, Fð!oÞ and F0ð!oÞ.
For a given " and effective mass (d), the values of

Fð!oÞ and F0ð!oÞ determine the entire EOS. For example,
with " ¼ 1:25 and an effective mass of unity for the SNM
EOS (dm ¼ 0 MeV fm5), the well-established values
Fmð!omÞ ¼ $16:0 MeV, F0

mð!omÞ ¼ 0:0 MeV fm3 lead
to bm ¼ $924 MeV fm3" [Eq. (9)], am ¼ 822 MeV fm3

[Eq. (10)], andKm ¼ 219 MeV [Eq. (4)]. With Eq. (1), this
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FIG. 2 (color online). (a) EOS obtained from the Skyrme
interactions fitted to properties of doubly magic nuclei with
0.20 fm for the neutron skin of 208Pb and m(

n=m ¼ 0:90 at !on ¼
0:10 fm$3. (b) EOS obtained from the Skyrme interactions fitted
to properties of doubly magic nuclei with values of 0.16 and
0.24 fm for the neutron skin of 208Pb together with m(

n=m ¼
0:90. See caption to Fig. 1. The vertical lines are placed at
! ¼ 0:10 and 0:16 fm$3. The horizontal lines are placed at
25 MeV for S and 11 MeV for E=N.
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FIG. 1 (color online). (a) EOS obtained from the Skyrme
interactions. (b) EOS obtained from the Skyrme interactions
fitted to properties of doubly magic nuclei and with a constraint
of Rnp ¼ 0:20 fm for the neutron skin of 208Pb. The black lines
are those from the CSkP set with m(=m ) 1:0, the red lines are
those from the CSkP set with m(=m ¼ 0:70–0:85. The blue lines
are those for SLy4 and SkM*. The vertical line is placed at
! ¼ 0:16 fm$3.
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Fig. 9.— (Left) The 68% confidence contours in mass and radius for the quiescent neutron star in ω Cen, inferred by Heinke et al.
(2014; H14) and by Guillot & Rutledge (2015; G15) using different assumptions regarding the interstellar extinction (wabs: Morrison &
McCammon 1983; tbabs: Wilms et al. 2000), the presence of a power-law spectral component, and for different distances to the globular
cluster (4.8 kpc vs. 5.3 kpc). (Right) The 68% and 95% confidence contours in mass and radius for the quiescent neutron star in NGC 6397,
assuming a helium atmosphere and marginalized over a range of distances with a flat prior distribution between 2.44-2.58 kpc.

ω

Fig. 10.— The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from (Left) all neutron
stars with thermonuclear bursts (Right) all neutron stars in low-mass X-ray binaries during quiescence.

XSPEC), where the wabs model (employed by Guillot et al. 2013) leads to somewhat larger radii for the same distance.
In the present study, we repeat the analysis of Guillot et al. (2013) individually for the sources in M13, M28,

NGC 6304, M30, and ωCen. (Note that for the last two sources, the observations were reported in Guillot & Rutledge
2014). In all of the spectral fits, we allow for a power-law component with a fixed photon index Γ = 1 but a free
normalization. We leave the hydrogen column density as a free parameter in the fits, but fix it at the most likely value
when calculating the posterior likelihoods over mass and radius. The best-fit spectral parameters for each source are
shown in Table 2. We also fold in distance uncertainties using a Gaussian likelihood for the distance to each source
with a mean and standard deviation given in Table 2.
For the neutron star in NGC 6397, we use the results of the helium atmosphere modeling reported in Heinke et

al. (2014) and marginalize the posterior likelihoods over the narrow range of distances with a flat prior distribution
between 2.44−2.58 kpc to incorporate this source of systematic uncertainty. We show the results of the spectral fit in
Table 2 and the corresponding limits in the mass-radius plane in the right panel of Figure 9.
We show the resulting posterior likelihoods over the mass and radius for all of the qLMXBs in Figure 10 and compare

them to the combined constraints from the X-ray bursters discussed earlier. There is a high level of agreement between
all of these measurements. Note that the smaller widths of the 68% confidence contours in a subset of the qLMXBs
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determine the EOS at several times 
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Electron capture/β– decay cycles 
can thermally decouple the burst 
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new facilities, such as FRIB, will 
explore properties of neutron-rich 
nuclei found in crust.
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Table 1
Limits for the Radius of a 1.4 Solar Mass Neutron Star for All of the Models Considered in This Work

EOS Model Data Modifications R95%> R68%> R68%< R95%<

(km) (km) (km) (km)

Variations in the EOS model

A (2 polytropes) · · · 11.18 11.49 12.07 12.33
B (2 polytropes) · · · 11.23 11.53 12.17 12.45
C (line segments) · · · 10.63 10.88 11.45 11.83
D (hybrid w/quarks) · · · 11.44 11.69 12.27 12.54

Variations in the data interpretation

A I (high fC) 11.82 12.07 12.62 12.89
A II (low fC) 10.42 10.58 11.09 11.61
A III (redshifted photosphere) 10.74 10.93 11.46 11.72
A IV (without X7) 10.87 11.19 11.81 12.13
A V (without M13) 10.94 11.25 11.88 12.22
A VI (no PREs) 11.23 11.56 12.23 12.49
A VII (no qLMXBs) 11.17 11.96 12.47 12.81
Global limits · · · 10.42 10.58 12.62 12.89

More extreme scenarios

C (line segments) II (low fC) 9.17 9.34 9.78 10.07
A (2 polytropes) VIII (Mmax > 2.4) 12.14 12.29 12.63 12.81
E (bare quark star) · · · 10.19 10.64 11.57 12.01

Scenario motivated by Suleimanov et al. (2011)

A (2 polytropes) IX (see the text) 12.35 12.83 13.61 13.92

Note. Model A and the assumption 1.33 < fC < 1.47 for the PRE sources are assumed unless specified otherwise.
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Figure 1. Comparison of the predicted M–R relation with the observations.
The shaded regions outline the 68% and 95% confidences for the M–R relation;
these include variations in the EOS model and the modifications to the data
set (see Table 1) but not the more extreme scenarios. The lines give the 95%
confidence regions for the eight neutron stars in our data set.
(A color version of this figure is available in the online journal.)

the short PRE bursts and the qLMXBs M13 and ω Cen not
be considered because of modifications to their spectra due to
accretion (Suleimanov et al. 2011). On the other hand, Güver
et al. (2012) find that the long PRE burst of 4U 1724 does not
fit modern atmosphere models as well as short bursts from the
same source. A full resolution of this discrepancy is outside the
scope of this work and may require more observational data to
fully understand PRE bursts. Nevertheless, we have attempted
to cover the most likely scenarios.
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Figure 2. Predicted pressure as a function of baryon density of neutron star
matter as obtained from astrophysical observations. The region labeled “NS
68%” gives the 68% confidence limits and the region labeled “NS 95%” gives the
95% confidence limits. Results for neutron star matter from effective field theory
(Hebeler et al. 2010; see inset), from quantum Monte Carlo (Gandolfi et al.
2012), and from constraints inferred from heavy-ion collisions (Danielewicz
et al. 2002) are also shown for comparison.
(A color version of this figure is available in the online journal.)

While we are able to significantly constrain the P –ε relation,
determination of the composition of neutron star cores is not
yet possible. To probe the core composition, we consider EOS
model E, which describes the entire star by the high-density
quark matter EOS used in model D, i.e., a self-bound strange
quark star. In the mass range 1.4–2 solar masses, the radii are not
significantly different from our baseline model so that there is
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