Type-I burst as a probe to XRB accretion in the hard state

Speaker: Ji Long in collaboration with Zhang Shu, Chen YuPeng, Zhang Shuang-Nan, Diego F. Torres, Peter Kretschmar, Erik Kuulkers, Li Jian, and Chang Zhi

Institute of High Energy Physics, China Institute of Space Sciences (IEEC-CSIC), Spain

Spectral states

high/ ▲ soft state

> low/ hard state

accretion rate

(Chris Done et al, 2007)

Spectral states

Worpel et al. (2013) proposed that the persistent flux might be increased during bursts. Solution Use the model: $B + fa \times P$ B: black body; the model for bursts P: persistent emission model; freeze parameters at values before bursts fa: a multiplicative factor;

Question:

If the nature of the persistent emissions in the hard and soft state is different, do they have the similar behaviors during bursts?

PRE non-PRE

process

Step1: Classify the bursts based on the CCD

Step 2: : timeresolved spectral analysis assuming a constant persistent flux fitting spectra with **BB** model $\rightarrow \rightarrow \rightarrow$ **Very different** goodness-of-fits

process

Step 3: time-resolved spectral analysis including variable persistent flux.

Why do different states have different fa trends?

Why do different states have different fa trends?

Why do different states have different fa trends ? interact with: the disk in the soft state; the corona in the hard state??

Another source: GS 1826-238; an atoll source; always in the hard state; significant hard X-ray shortage

Simultaneous enhanced soft X-rays and diminished hard X-rays

the possible physical processes in theory the corona cooling

seed photons, electron temperature, optical depth

the increased seed photons ---> increased fa the decreased coronal temperature ---> hard X-ray shortages

Other possible physical processes

change the disk structure

Inflow caused by Poynting-Robertson drag

the possible physical processes in theory Changes of the disk structure

The energy flow (Liu, B. F. et al. 2007) The mass flow

The condensation of matter from a corona to a cool, optically thick inner disk under the strong Compton cooling. an enhanced inner disk ---> increased fa a weaker corona ---> hard X-ray shortages Inflow caused by Poynting-Robertson drag remove the angular momentum efficiently

 -->increased accretion
 --> increased fa
 hard to explain the diminished hard X-rays

Summary:

The enhanced soft X-rays:

- the increased seed photons in Compton scattering
- an additional inner disk
- Poynting-Robertson drag
- The diminished hard X-rays:
 - outflow
 - Compton cooling

