Burst probe and HXMT mission

Zhang Shu

in collaboration with : Ji Long, Chen YuPeng, Zhang Shuang-Nan, Diego F. Torres, Peter Kretschmar, Erik Kuulkers, Li Jian

Institute of High Energy Physics, China Institute of Space Sciences (IEEC-CSIC), Spain ESAC, Spain

Outline

Corona puzzle Proper probe State-of-art progress Issues be addressed HXMT mission Merits reside in HXMT

Corona puzzle

The classification of the X-ray binary systems

High-mass X-ray binaries (wind-fed X-ray sources)

Low-mass X-ray binaries (disk-fed X-ray sources)

Spectral Hardness

A typical hard-intensity diagram of outburst evolutions (Tomaso Belloni 2010)

The corona puzzle

well known XRB corona: *WELL* used in modelling, but *less KNOWN* in its nature

the formation mechanism? *Disk evaporation or magnetic re-connection* Intrinsic dynamic time scale? *Of hours or seconds*

The corona puzzle

in definition, radiation inefficient hot flow

Lighted up mostly in case of the presence of Compton seed photons (soft X-rays)

XRB state transition(corona cooling):

Corona formation:

Even harder be addressed largely suppressed with accompanied strong soft X-rays

To decode the corona puzzle one needs the proper probe:

Intense soft X-rays & very short time scale

BH XRB: rare NS XRB: the thermal nuclear flare (type-I bursts)

The first observed type-I burst (Grindlay et al, 1976)

Proper probe: type-I burst

Physical process: thermonuclear explosions on the surface of neutron stars

color temperature: 2-3 keV (corona temperature: ~ tens keV) time scale: tens to hundreds of seconds total energy: $10^{39} - 10^{40}$ ergs

proper probe: type-I burst

Figure 3. Illustration of the central region of an NS XRB, in which a corona is located around the disk and cooled by the soft X-rays from a type-I burst that occurred on surface of the NS.

The type-I bursts are located on the surface of neutron stars, which can be regarded as a shower of soft X-rays to cool the surrounding hot corona.

State-to-art progress

The pioneer research

Quenching of Corona During a Type I Burst

Study of one burst from Aql X-1 in 2003: hard X-ray shortage of about 2 sigma level (Maccarone & Coppi, 2003, A&A, 399,1151)

Current researches

Papers published to this direction recently:

Outburst evolution in IGRJ 17473-2721 Zhang S., Chen Y.P., et al., 2009, A&A, 502, 231 Type-I bursts reside in this outburst Chen Y.P., Zhang S., et al., 2010, A&A, 510, 81 Corona study in this outburst Chen Y.P., Zhang S., et al., 2011, A&A, 534, 101 ← Chen Y.P., Zhang S., et al., 2012, ApJL, 752, 34 ←

Ji L., Zhang S., et al., 2013, MNRAS, 432, 2773 Chen Y.P., Zhang S., et al., 2013, ApJL, 777, Ji L., Zhang S., et al., 2014, ApJ, 782, 40 Ji L., Zhang S., et al., 2014, A&A, 564, 20

Zhang S., et al., 2014, ApJL, 791, 394 JiL., Zhang S., et al., 2015, ApJL, accepted Ji L..

Type-I burst as probe to corona in this outburst

Universal of the result by investigating and providing a sample

observed with hard X-ray shortage

Extension of the research to soft X-rays, discovery of fa dependence on spectral states

Joint diagnostic on disk/corona based on fa evolution at soft X-rays and the hard X-ray shortage

The start of the entire story: IGR J17473-2721

RXTE/PCA light curve (2–10 keV, upper panel) and Swift/BAT light curve (15–50 keV, lower panel) covering the 2008 outburst of IGR J17473–2721 with a time resolution of 1 day.

Figure 4. Linear fit to the data shown in the upper panel of Figure 2.

(Chen Yupeng et al., 2012, ApJL)

Figure 5. Cross-correlation between the 2–10 keV and 30–50 keV, with a time resolution of 1 s, for the combined burst in the preceding LHS.

Universal of the observed phenomena : 4U 1636-536

During the low/hard state:

Shortage at 40-50 keV while bursting;

Time lag of 2.4+-1.5 seconds with respect to the soft X-rays.

(Ji Long et al., 2013, MNRAS)

Universal of the observed phenomena : the sample

The findings are universal to NS XRBs?

Constitute an atoll sample by satisfying the selection criteria of,

- 1, PCA hard X-ray count rate >0.2 ct/s
- 2, Burst number > 10
- 3, average burst temperature < 2.5 keV

A sample consists of 5 atoll sources:

Aql X-1, KS 1731-260, 4U 1705-44, IGR J17473-2721, 4U 1636-536

Only at extremely island state (Sz<1.5) the 40-50 keV count rate significantly larger than zero.

Time lags are universal to the atoll sample; an average over the sample gives 2.3+-0.7 seconds.

New chapter of the story: dependence of fa on spectral states

Dependence of the continuous emission (fa) with spectral state of the outburst: the case of 4U 1608-52

New chapter of the story: joint diagnostic at both hard/soft X-rays

The clock burster GS1826-238

New chapter of the story: joint diagnostic at both hard/soft X-rays

The clock burster GS1826-238

Issues be addressed

Hard X-ray shortage from cooling the jet?

1,Observationally, the hard X-rays in low/hard state of atolls are corona dominated;

2, The opening angle of the NS surface respect to jet too small for effective Compton cooling.

Energy budget of corona

Corona cooled from \sim 40 keV to \sim 15 keV under which hard X-rays not detectable to PCA

Corona blown away by burst radiation: shortage in hard X-ray suggests majority of the corona gone.

Dynamical time scale of corona

Observed with a delay of few seconds:

Compton cooling << 1 second. Dynamical time scale a few seconds be intrinsic to corona recovery.

corona formation mechanism

Typical time scale:

1,Disk evaporation: > hundreds seconds 2,Magnetic re-connection: seconds or less

Corona/disk configuration

Figure 7. The NS-disc-corona system adopted in our analysis. The blue pancake represents the corona (in order to look at it more clearly, we cut a cross section). The colors in the annular rings show a cooling accretion disk at larger radii.

Size & location of corona (Reis & Miller 2013 ApJ 769 7):

A few Rg on top of the disk (lags in soft X-rays due to reflection of the disk, reverberation mapping of AGN),

Other issues?

Spectral shape of the continuum emission during burst?

Evolution of the hard X-ray shortage along outburst?

Missing of the hard X-ray shortage in some atolls?

Evolution of corona with jet monitored at radio band?

.....

HXMT mission

HXMT payloads

Characteristics of the HXMT Mission

Detectors	LE: SCD, 384 cm ² ;ME : Si-PIN, 952 cm ² HE : Nal/CsI, 5000 cm ²				
Energy Range	LE: 1-15 keV;ME: 5-30 keV;HE: 20-250 keV				
Time Resolution	HE: 25µs; ME: 180µs;LE: 1ms				
Working Temperature	HE: 18±1℃; ME: -50~-20℃; LE: -80-45℃				
Energy Resolution	LE: 2.5% @ 6 keV ME: 14% @ 17.8 keV HE: ≤16% @ 60 keV				
Field of View of one module	LE: 6° ×1.6°; 6° ×4°; 60° ×3°; blind; ME: 4° ×1°; 4° ×4°; blind; HE: 5.7° ×1.1°; 5.7° ×5.7°; blind				
Source Location	<1' (20σ source)				

Characteristics of the HXMT Mission

Orbit	Altitude: ~550 km ; Inclination: ~43°
Attitude	Three-axis stabilized Control precision: $\pm 0.1^{\circ}$ Measurement accuracy: $\pm 0.01^{\circ}$
Data Rate	LE: 3 Mbps; ME: 3 Mbps; HE: 300 kbps
Payload Mass	~1000 kg
Nominal Lifetime	4 years
Working Mode	Scan survey, small region scan, pointed observation

Background components of ME

Total background of HE varying with time

after 10days

Background components of LE

Simulation of the in-orbit background of HXMT

Sensitivity

The sensitivities of the three telescopes of HXMT. The sensitivities of NuSTAR, INTEGRAL/IBIS and RXTE/HEXTE were reprinted from Koglin et al. (2005)³.

Comparison between HXMT and other major hard X-ray telescopes

HXN	ЛТ	RXTE	INTEGRAL/IBIS	SWIFT	NuSTAR
Energy Band	LE: 0.8-15	PCA: 2-60	15-10000	XRT: 0.5-10	3-79
(keV)	ME: 5-30	HEXTE: 15-		BAT: 10-150	
	HE: 15-250	250			
Detection Area	LE: 384	PCA: 6000	2600	XRT: 110	847 @ 9 keV
(cm ²)	ME: 950	HEXTE: 1600		BAT: 5200	60 @ 78 keV
	HE: 5000				
Energy	150@ 6 keV	1200@6keV	8000@ 100 keV	150 @ 6 keV	900 @ 60 keV
Resolution (eV)	2500@ 20	10000@60		3300 @ 60 keV	
	keV	keV			
	10000@60				
	keV				
Time	LE: 1	PCA: 0.001	0.06	XRT: 0.14,	0.1
Resolution	ME: 0.18	HEXTE: 0.006		2.2,2500	
(ms)	HE: 0.012			BAT: 0.1	
Sensitivity	0.5	1.5	3.8	9	0.03 @ 20 keV
$(@100 \text{keV}, 3\sigma)$,				
10 ⁵ s, mCrab)					

Sciences with HXMT

Large sky-area scan

- Diffuse X-ray emission: cosmic X-ray background; X-ray emission from the Galactic ridge and the Galactic center region
- Detection of new (transient) sources and constrain their broad band (1-250 keV) properties
- Follow up observation of gravitational wave bursts

Pointed observations

- X-ray binaries: multiwavelength temporal behaviors, broad band spectra and Fe emission line
 - Monitoring of Blazars and bright AGNs

Merits reside in HXMT

Burst probe with HXMT

Advantages

- Coverage of a broad energy band (1-250keV)
- Large detection area at hard X-ray (5000 cm2 at above 20 keV)
- Good energy resolution at soft X-rays (below 15 keV, SCD)
- Free from pile up problem at soft X-rays (below15 keV, SCD)

Merits ?

- Measurement of the continuous emission prior to burst
- Measurement of the burst properties
- fa & hard X-ray shortage during burst

Simulations

Take the parameters from GS 1826-238, 4U1636-536 and IGRJ 17473-2721.

Models for Continuous emission (key parameters) soft X-rays: wabs*disko (norm., accretion rate) hard X-rays: Comptt (optical depth T and corona Te) Model for Burst: bbodyrad (temperature Te) Model for burst + persistent emission soft X-rays: wabs*(bbodyrad+fa*disko) (fa) hard X-rays: wabs* cutoffpl (Ecut)

On the continuous spectrum

Parameters from GS 1826-238 & 4U1636-536

On the burst spectrum

On the hard spectrum of continuum + burst

Parameters from IGRJ 17473-2721

Merits with HXMT

1, precise measurement of the continuum spectrum prior to burst at hard X-rays.

2, improvement on the statistics of hard X-ray shortages during burst.

->

more shortage sample; evolution with outburst

An application to XRB state transition

Figure 7. The NS-disc-corona system adopted in our analysis. The blue pancake represents the corona (in order to look at it more clearly, we cut a cross section). The colors in the annular rings show a cooling accretion disk at larger radii.

1, The corona is more likely cooled by disk emission at small inner radius

2,At a larger inner disk radius, in the LHS, the corona can be effectively cooled by disk emissions only if located in the vicinity of the disk. Comparison to the cotemporary corona researches (Corona issue addressed recently in literature)

In Worpel, Galloway, & Price 2013 (astro-ph/1303.4824) In 2-10 keV, the persistent emission can be promoted by a factor of a few compared to the pre-burst value.

Bust cooling of the corona that produce temporarily a inner disk? If so, it has to be evaporated again, otherwise the persistent emission increase after each burst;

Our findings show persistent emission change a lot while bursting, not a proper handling of a constant persistent spectral shape; Comparison to the cotemporary corona researches (Corona issue addressed recently in literature)

Size & location of corona : (Reis & Miller 2013 ApJ 769 7) Highly compact

A few Rg on top of the disk (lags in soft X-rays due to reflection of the disk, reverberation mapping of AGN) ~20 Rg along the disk (microlensing effect for corona at X-ray of AGN)

Favor the scenario:

Emission by magnetic reconnection in the innermost disk And/or Process in the compact base of a central relativistic jet. Total Efficiency

Total Efficiency

- BCD: at 30-60 keV
- PCA: about 1ct/s
- HEXTE : about a factor of 10 higher.