Prospects for the direct WHIM detection by Athena

The soft X-ray WHIM emission with WFI

Andrzej M. Sołtan & Agata Różańska

Nicolaus Copernicus Astronomical Center
Warszawa
Outline

1. Dark baryons

2. WHIM as seen by XMM-Newton

3. WHIM by Athena WFI
Outline

1. Dark baryons
2. WHIM as seen by XMM-Newton
3. WHIM by Athena WFI
WHERE ARE THE BARYONS?

RENYUE CEN AND JEREMIAH P. OSTRIKER

Princeton University Observatory, Princeton University, Princeton, NJ 08544; cen@astro.princeton.edu, jpo@astro.princeton.edu

Received 1998 September 11; accepted 1998 October 29

ABSTRACT

New high-resolution, large-scale cosmological hydrodynamic galaxy formation simulations of a standard cold dark matter model (with a cosmological constant) are utilized to predict the distribution of baryons at the present and at moderate redshift. It is found that the average temperature of baryons is an increasing function of time, with most of the baryons at the present time having a temperature in the range of 10^5–10^7 K. Thus not only is the universe dominated by dark matter, but more than one-half of the normal matter is yet to be detected. Detection of this warm/hot gas poses an observational challenge, which requires sensitive EUV and X-ray satellites. Signatures include a soft cosmic X-ray background, apparent warm components in hot clusters due to both intrinsic warm intracluster and intercluster gas projected onto clusters along the line of sight, absorption lines in X-ray and UV quasar spectra [e.g., O vi (1032, 1038) A lines, O vii 574 eV line], strong emission lines (e.g., O viii 653 eV line), and low-redshift, broad, low column density Lyα absorption lines. We estimate that approximately one-fourth of the extragalactic soft X-ray background (at 0.7 keV) arises from the warm/hot gas, half of it coming from $z < 0.65$, and three-quarters coming from $z < 1.00$, so the source regions should be identifiable on deep optical images.

Subject headings: cosmology: theory — galaxies: formation — large-scale structure of universe — methods: numerical

1. INTRODUCTION

Where are the baryons, the ordinary nonexotic matter of...
Local baryon deficit

$$\Omega_{\text{lum}} \approx \Omega_* + \Omega_{\text{HI}} + \Omega_{\text{X:clusters}} \approx 0.012 \, h_{70}^{-2}$$

$$\Omega_b \approx (0.045 \pm 0.057)$$ \hspace{1cm} (Primeval abundances D, 3He, 4He, Li)

$$> 0.037 \, h_{70}^{-1}$$ \hspace{1cm} (Ly-α forest at $z \approx 2$)

$$\Omega_{\text{lum}} < \Omega_b < \Omega_m \approx 0.3$$

Baryon deficyt Dark matter

$$h_{70} = H_0/70 \, \text{km s}^{-1}\text{Mpc}^{-1}$$
Four phases of baryonic matter

1. Condensed \(\delta > 1000 \) \(T < 10^5 \) K stars, interstellar matter

2. Hot \(T > 10^7 \) K intracluster gas

3. Diffuse \(\delta < 20 \) \(T < 10^5 \) K Ly-\(\alpha \) forest

4. Warm \(10^5 < T < 10^7 \) K WHIM

Warm-Hot Intergalactic Medium

Where are the baryons?
Baryons and Dark Matter

Suto et al., JKAS 37, 387 (2004)
Outline

1. Dark baryons

2. WHIM as seen by XMM-Newton

3. WHIM by Athena WFI
X-ray sky
XRB vs galaxies
XRB vs galaxies
X-ray background (XRB)

- The XRB at energies above ~ 1 keV is generated by a population of discrete extragalactic sources (mostly AGNs).
- At energies below ~ 1 keV some (basically unknown) contribution to the XRB generate also: local (Galactic) hot plasma and the WHIM.
- Fluctuations of the XRB at arcmin scale are generated by a nonuniform distribution of sources contributing to the XRB: AGNs and WHIM.
- The WHIM is strongly correlated with galaxies.
- WHIM in emission: spherical halos rather than filaments.
X-ray background (XRB)

- The XRB at energies above ~ 1 keV is generated by a population of discrete extragalactic sources (mostly AGNs).
- At energies below ~ 1 keV some (basically unknown) contribution to the XRB generate also: local (Galactic) hot plasma and the WHIM.
- Fluctuations of the XRB at arcmin scale are generated by a nonuniform distribution of sources contributing to the XRB: AGNs and WHIM.
- The WHIM is strongly correlated with galaxies.
- WHIM in emission: spherical halos rather than filaments.
X-ray background (XRB)

- The XRB at energies above ~ 1 keV is generated by a population of discrete extragalactic sources (mostly AGNs).
- At energies below ~ 1 keV some (basically unknown) contribution to the XRB generate also: local (Galactic) hot plasma and the WHIM.
- Fluctuations of the XRB at arcmin scale are generated by a nonuniform distribution of sources contributing to the XRB: AGNs and WHIM.
- The WHIM is strongly correlated with galaxies.
- WHIM in emission: spherical halos rather than filaments.
X-ray background (XRB)

- The XRB at energies above ~ 1 keV is generated by a population of discrete extragalactic sources (mostly AGNs).
- At energies below ~ 1 keV some (basically unknown) contribution to the XRB generate also: local (Galactic) hot plasma and the WHIM.
- Fluctuations of the XRB at arcmin scale are generated by a nonuniform distribution of sources contributing to the XRB: AGNs and WHIM.
- The WHIM is strongly correlated with galaxies.
- WHIM in emission: spherical halos rather than filaments.
The XRB at energies above ~ 1 keV is generated by a population of discrete extragalactic sources (mostly AGNs).

At energies below ~ 1 keV some (basically unknown) contribution to the XRB generate also: local (Galactic) hot plasma and the WHIM.

Fluctuations of the XRB at arcmin scale are generated by a nonuniform distribution of sources contributing to the XRB: AGNs and WHIM.

The WHIM is strongly correlated with galaxies.

WHIM in emission: spherical halos rather than filaments.
• Whim emission expected extremely weak
 ↓
• stacking of observations
 \equiv \text{cross-correlation function}
• Azimuthal symmetry
• X-ray sky \rightarrow \text{XMM-Newton archive}
• Galaxy data \rightarrow \text{APM + MAPS catalogue}
\quad (17 - 20 \text{ mag}, 0.06 \lesssim z \lesssim 0.22)
• 150 pointings \times 16000 \text{ s} \times 20 \text{ galaxies}
\quad \sim 5 \times 10^7 \text{ s}
• Order of magnitude 'deeper' than 4Ms CDFS
• Whim emission expected extremely weak
 ↓
• stacking of observations
 \equiv \text{cross-correlation function}
• Azimuthal symmetry
• X-ray sky \rightarrow \text{XMM-Newton archive}
• Galaxy data \rightarrow \text{APM + MAPS catalogue}
 \quad (17 - 20 \text{ mag}, 0.06 \lesssim z \lesssim 0.22)
• 150 pointings \times 16000 \text{ s} \times 20 \text{ galaxies}
 \sim 5 \times 10^7 \text{ s}
• Order of magnitude ‘deeper’ than 4Ms CDFS
- Whim emission expected extremely weak
 ↓
- stacking of observations
 \[\equiv \text{cross-correlation function} \]
- Azimuthal symmetry
- X-ray sky \(\rightarrow \) XMM-Newton archive
- Galaxy data \(\rightarrow \) APM + MAPS catalogue
 \[(17 - 20 \text{ mag, } 0.06 \lesssim z \lesssim 0.22)\]
- 150 pointings \(\times \) 16000 s \(\times \) 20 galaxies
 \(\sim 5 \times 10^7 \text{ s} \)
- Order of magnitude ‘deeper’ than 4Ms CDFS
Whim emission expected extremely weak

stacking of observations

≡ cross-correlation function

Azimuthal symmetry

X-ray sky — XMM-Newton archive

Galaxy data — APM + MAPS catalogue

(17 – 20 mag, 0.06 ≲ z ≲ 0.22)

150 pointings × 16000 s × 20 galaxies

∼ 5 × 10⁷ s

Order of magnitude ‘deeper’ than 4Ms CDFS
Whim emission expected extremely weak

↓

stacking of observations

≡ cross-correlation function

Azimuthal symmetry

X-ray sky — XMM-Newton archive

Galaxy data — APM + MAPS catalogue

(17 – 20 mag, 0.06 \(\lesssim\) z \(\lesssim\) 0.22)

150 pointings \(\times\) 16000 s \(\times\) 20 galaxies

\(\sim 5 \times 10^7\) s

Order of magnitude ‘deeper’ than 4Ms CDFS
Whim emission expected extremely weak

stacking of observations

≡ cross-correlation function

Azimuthal symmetry

X-ray sky — XMM-Newton archive

Galaxy data — APM + MAPS catalogue

(17 – 20 mag, 0.06 ≲ z ≲ 0.22)

150 pointings × 16000 s × 20 galaxies

∼ 5 × 10^7 s

Order of magnitude ‘deeper’ than 4Ms CDFS
- Whim emission expected extremely weak
 ↓
- stacking of observations
 ≡ cross-correlation function
- Azimuthal symmetry
- X-ray sky — XMM-Newton archive
- Galaxy data — APM + MAPS catalogue
 \(17 - 20\) mag, \(0.06 \lesssim z \lesssim 0.22\)
- 150 pointings \(\times 16000\) s \(\times 20\) galaxies
 \(\sim 5 \times 10^7\) s
- Order of magnitude ‘deeper’ than 4Ms CDFS
• Whim emission expected extremely weak
 ↓
• stacking of observations
 ≡ cross-correlation function
• Azimuthal symmetry
• X-ray sky — XMM-Newton archive
• Galaxy data — APM + MAPS catalogue
 (17 – 20 mag, 0.06 ≲ z ≲ 0.22)
• 150 pointings × 16000 s × 20 galaxies
 ~ 5 × 10⁷ s
• Order of magnitude ‘deeper’ than 4Ms CDFS
Whim emission expected extremely weak

↓

stacking of observations

≡ cross-correlation function

Azimuthal symmetry

X-ray sky — XMM-Newton archive

Galaxy data — APM + MAPS catalogue

(17 − 20 mag, 0.06 ≤ z ≤ 0.22)

150 pointings × 16000 s × 20 galaxies

∼ 5 × 10^7 s

Order of magnitude ‘deeper’ than 4Ms CDFS
Correlation analysis

- The WHIM is strongly correlated with the galaxy distribution.
- At small angular scales, the WHIM structure defines the signal of the cross-correlation function (CCF).
- At large scales the CCF signal is generated by the large scale fluctuations of the galaxy distribution (the galaxy autocorrelation function).

\[
\delta \rho(\theta) = s \cdot P(\theta) + s \cdot w_{gg}(\theta) \cdot n_g
\]

- \(\delta \rho(\theta)\) – average excess of the X-ray flux,
- \(s\) – brightness of the individual WHIM halo around galaxy,
- \(P(\theta)\) – normalized surface brightness of the WHIM halo,
- \(w_{gg}(\theta)\) – autocorrelation function of galaxies,
- \(n_g\) – surface density of galaxies surrounded by the WHIM halos.
Correlation analysis

- The WHIM is strongly correlated with the galaxy distribution.
- At small angular scales, the WHIM structure defines the signal of the cross-correlation function (CCF).
- At large scales the CCF signal is generated by the large scale fluctuations of the galaxy distribution (the galaxy autocorrelation function).

\[\delta \rho(\theta) = s \cdot P(\theta) + s \cdot w_{gg}(\theta) \cdot n_g \]

- \(\delta \rho(\theta) \) – average excess of the X-ray flux,
- \(s \) – brightness of the individual WHIM halo around galaxy,
- \(P(\theta) \) – normalized surface brightness of the WHIM halo,
- \(w_{gg}(\theta) \) – autocorrelation function of galaxies,
- \(n_g \) – surface density of galaxies surrounded by the WHIM halos.
Correlation analysis

- The WHIM is strongly correlated with the galaxy distribution.
- At small angular scales, the WHIM structure defines the signal of the cross-correlation function (CCF).
- At large scales the CCF signal is generated by the large scale fluctuations of the galaxy distribution (the galaxy autocorrelation function).

\[\delta \rho(\theta) = s \cdot P(\theta) + s \cdot w_{gg}(\theta) \cdot n_g \]

\(\delta \rho(\theta) \) – average excess of the X-ray flux,
\(s \) – brightness of the individual WHIM halo around galaxy,
\(P(\theta) \) – normalized surface brightness of the WHIM halo,
\(w_{gg}(\theta) \) – autocorrelation function of galaxies,
\(n_g \) – surface density of galaxies surrounded by the WHIM halos.
Correlation analysis

- The WHIM is strongly correlated with the galaxy distribution.
- At small angular scales, the WHIM structure defines the signal of the cross-correlation function (CCF).
- At large scales the CCF signal is generated by the large scale fluctuations of the galaxy distribution (the galaxy autocorrelation function).

\[\delta \rho(\theta) = s \cdot P(\theta) + s \cdot w_{gg}(\theta) \cdot n_g \]

- \(\delta \rho(\theta) \) – average excess of the X-ray flux,
- \(s \) – brightness of the individual WHIM halo around galaxy,
- \(P(\theta) \) – normalized surface brightness of the WHIM halo,
- \(w_{gg}(\theta) \) – autocorrelation function of galaxies,
- \(n_g \) – surface density of galaxies surrounded by the WHIM halos.
CCF at high energies

![Graph showing Flux vs Separation](image-url)
CCF at soft energies
WHIM – surface brightness profile

Count rate excess [cnt/s/pix]

Separation [arc min]

keV

0.30 – 0.50 ×
0.70 – 1.00 ▲
1.00 – 1.35 ■
1.90 – 3.00 ●
3.00 – 4.50 ★
Outline

1. Dark baryons
2. WHIM as seen by XMM-Newton
3. WHIM by Athena WFI
\[E = 0.3 - 0.5 \text{ keV} \]

\[\sigma = (2 - 3) \times 10^{-8} \text{ cnt s}^{-1} \text{ pxl}^{-1} \]

\[\sigma = 5.6 \times 10^{-6} \text{ cnt s}^{-1} \text{ arcmin}^{-1} \]

\[1 \text{ cnt} = 0.65 \times 10^{-11} \text{ erg cm}^{-2} \]

\[\sigma = 5.7 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1} \text{ arcmin}^{-1} \]
WFI background
Signal against Noise

\[\Delta n = \text{ARF} \cdot \sigma \]

\[S = \Delta n \cdot A \cdot t_{\text{exp}} \]

\[N = \sqrt{b \cdot A \cdot t_{\text{exp}}} \]

\[\frac{S}{N} = \Delta n \cdot \sqrt{\frac{A \cdot t_{\text{exp}}}{b}} \]

where:

\(\Delta n \) – count excess generated by WHIM per arcmin\(^2\)

\(A \) – solid angle of the WHIM halo

\(t_{\text{exp}} \) – exposure time
S/N for two mirror modules on-axis

![Graph showing S/N vs. t_exp for two mirror modules on-axis. The graph has two curves, one for 1190mm and another for 1469mm, indicating the signal-to-noise ratio with respect to the exposure time.](graph.png)
... most likely will have the capability to detect the soft X-ray emission from individual WHIM halos accumulated around nearby galaxies. A moderate exposure time would be required.

Imaging of the detailed structure will need long but still feasible exposures.

Thank you