Connecting the high- and low-energy Universe: dust processing inside Supernova Remnants

Elisabetta Micelotta1,*, Eli Dwek2 and Jonathan Slavin3

1Institut d’Astrophysique Spatiale, France - * Marie Curie Fellow - elisabetta.micelotta@gmail.com; 2NASA Goddard Space Flight Center, USA; 3Harvard-Smithsonian Center for Astrophysics, USA

Context: supernovae are efficient dust factories but the net amount reaching the ISM is still unknown. Such information is crucial to understand the origin and evolution of dust in the local and high-redshift Universe.

Aim: investigating dust destruction by the reverse shock inside the supernova cavity at different evolutionary stages of the remnant.

Observational facts: newly formed dust observed in ejecta clumps of Cassiopeia A. Dust in clumps encounters the reverse shock traveling through the ejecta toward the center of the supernova.

Methods: modeling the effect of the reverse shock encountering ejecta clumps, where the dust initially resides, immersed in a hot and tenuous medium.

Our model describes the propagation of the reverse shock and evaluates the destruction of the newly formed dust.

We take into account the variation of the physical properties of both the shock and the ejecta across the remnant.

For the first time, we include the effect of clumpy ejecta.

Oxygen-rich clumps → fast cooling → low temperature → inertial sputtering only.

Silicates are more affected than amorphous carbon.

Sputtering heavily modifies dust grain distribution → destruction.

The size distribution evolves towards a specific size range.

\begin{itemize}
 \item [1] Truelove, J. K. & McKee, C. F. 1999, ApJS, 120, 299
 \item [5] Micelotta, E. et al. 2015, to be submitted to A&A
\end{itemize}