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SMBHs in the Universe
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SMBHs with MBH~106 - 1010 M⦿ are 
found at the centres of most (if not 
all) galaxies in the local Universe
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Bulk of SMBH mass is built 
up via accretion (AGN), 
peaking at z~1-3 



Grow by merging 
and accretion

SMBH seed formation mechanisms
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Athena (level 1) science aims

Athena shall
• determine the nature of the seeds of the earliest growing 

SMBHs (at z>6) 
• characterise the processes that dominated their early 

growth 
• investigate the influence of accreting SMBHs on the 

formation of galaxies.

Need to identify large samples of 
“typical” (low-to-moderate luminosity) 

AGNs at z>6, probing the epoch when the 
first galaxies and SMBHs formed and grew



X-ray surveys  - Chandra and XMM-Newton
• X-ray surveys are extremely efficient at finding 

AGN over a wide range of luminosities

• AGN dominate over galaxy X-ray emission
•  find fainter AGN, generally not identified by 

optical or IR selection

• Less affected by obscuration than optical/UV

• Current surveys only extend to z~5

• Do not probe z>6 : the “epoch of 
re-ionisation” when the first 
galaxies and SMBHs form and grow
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AGN at z>6 - the “tip of the iceberg”
• The known population of z > 6 consists of 

extremely luminous QSOs, identified in large area 
optical/near-infrared surveys (Fan et al. 2003, 2006, 
Mortlock et al. 2011, Banados et al. 2014, Venemans et al. 2015)

• Powered by SMBHs with MBH ~ 109 M⦿, 

comparable to the most massive SMBHs in the 
local Universe, but when the age of the Universe 
was only <1Gyr



AGN at z>6 - the “tip of the iceberg”

• Euclid surveys are expected to 
identify AGNs at z ~ 8 – 10 but 
will still be limited to the most 
luminous, unobscured sources 
(e.g. Roche et al. 2012)

• The known population of z > 6 consists of 
extremely luminous QSOs, identified in large area 
optical/near-infrared surveys (Fan et al. 2003, 2006, 
Mortlock et al. 2011, Banados et al. 2014, Venemans et al. 2015)

• Powered by SMBHs with MBH ~ 109 M⦿, 

comparable to the most massive SMBHs in the 
local Universe, but when the age of the Universe 
was only <1Gyr



Building high redshift QSOs - constraints on 
growth rates and seed masses
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• Assuming Eddington limited growth, 
black hole mass grows as:
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• The seed of ULAS J1120 (z=7.083, 
MBH≈2 x 109 M⦿) could have formed by 
direct collapse at z~15, but requires 
growth at ~Eddington limit for entire 
lifetime

• Pop III seed requires super-Eddington 
growth for substantial fraction of age 
of the Universe

N.B. extreme, rare object - not representative of 
bulk of early SMBHs and their growth



X-ray surveys  - Chandra and XMM-Newton
• X-ray surveys are extremely efficient at finding 

AGN over a wide range of luminosities

• AGN dominate over galaxy X-ray emission
•  find fainter AGN, generally not identified by 

optical or IR selection

• Less affected by obscuration than optical/UV

• Current surveys only extend to z~5

• Do not probe z>6 : the “epoch of 
re-ionisation” when the first 
galaxies form and grow

Latest constraints on 
evolution of AGNs at 

z ~ 0 – 5 
(X-ray luminosity function) 

Prospects for a large 
Athena WFI survey for 
‘typical’ AGNs z > 6 



The evolution of the X-ray luminosity function of 
AGN from z~0 to z~5
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• Number of recently updated studies on the evolution of the XLF of AGN at z~0-5    
- tracking the distribution of SMBH growth via accretion over the last ~12Gyr

• Enabled by latest deep+wide Chandra surveys (CDFS-4Ms, AEGIS 800ks, 
C‑COSMOS) + new techniques (counterpart IDs, photo-z, NH correction etc.)

see also 
Ueda et al. (2014), 
Miyaji et al. (2015), 
Buchner et al. (2015)

Evolution of the XLF is 
due to combination of:
• strong luminosity and 

density evolution of 
both absorbed and 
unabsorbed AGN 

• changing mix of 
absorbed and 
unabsorbed populations
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The evolution of the space density of AGN from 
z~0 to z~5
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• Luminosity-dependent evolution 
• Strong decline in space densities at z > 3 

for all luminosities 

Vito et al. (2014)
see also Georgakakis et al. (2015),  
Weigel et al. (2015)

High redshift



Detecting X-ray AGN at the highest redshifts
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Detecting X-ray AGN at the highest redshifts
Soft (0.5-2 keV) band

Athena WFI survey ~100 times 
faster than Chandra or XMM
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Athena WFI survey for z>6 AGNs

•A multi-layered Athena WFI survey, taking ~25 Ms  will 
identify >600,000 AGNs, including >400 AGNs at z>6

➔ Key challenge: identifying multiwavelength counterparts to 
Athena X-ray detections and estimating their redshifts



Counterparts to Athena X-ray sources (in the late 2020s)
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• ~50 deg2 Athena ‘shallow’ (~60ks) 
surveys will be well matched in 
depth/area to forthcoming deep 
optical/near-infrared surveys                        
(e.g. Euclid, HyperSuprimeCam, LSST)

• JWST imaging required to identify 
counterparts in deep Athena 
surveys (~2 deg2, 400ks)?

• Athena will pinpoint              
(low-L/obscured) AGNs within 
samples of early (z>6) galaxies 
- efficiently tracing SMBH 
accretion activity

• Further follow-up with ELTs,  
ALMA, JWST for 
• spectroscopic redshifts
• host properties (stellar mass, star formation 

rates, dust masses etc.)



Constraints on seed formation and early growth?
• Detection of an AGN with 

LX = 1043 erg s-1   at z = 6                                  
=>   MBH >~ 2x106 Msun     
(assuming ~Eddington limited)

• Detection of an AGN with 
LX = 1044 erg s-1   at z = 8                                  
=>   MBH >~ 2x107 Msun     
(assuming ~Eddington limited)

Athena will not identify SMBH seeds 
immediately after their formation
but samples will constrain the extent 
of early mass growth and possible 
seed mechanisms



Next steps for Athena: (1) scientific challenges
• How do we expect the (moderate-luminosity) AGN population to evolve in the 

early (z>6) universe?
• Theoretical framework?

• What can we learn now from lower redshift (z~0-5) sources?

• What can we learn now from the high-luminosity z>6 QSO population?

• What can we learn about the environment/types of galaxies where early black 
hole growth takes place from the multiwavelength information?

• What constraints can Athena place on seed formation/early growth 
mechanisms?

• How else can we study early SMBH formation/growth with Athena? e.g.
• Low-luminosity AGN in dwarf galaxies at later times: a more direct tracer of seed 

SMBHs and their formation environments?
• X-ray spectroscopic studies of known high-z QSOs (see Brandt talk)



Next steps for Athena: (2) technical challenges

• Optimised survey strategy  - field-of-view, overlap, chip gaps, dither pattern                       
                                              see poster 4.03 by Fabio Vito

• Confusion limit   - source detection and deblending techniques for a 5” PSF

• Counterpart identification
• Optical/IR imaging requirements, photo-z techniques 
• spectroscopic follow-up campaigns
• Host galaxy properties

• X-ray spectral information for z>6 sources with the WFI  
                                                 (see also Francisco Carrera talk, z~1-4)

• Full end-to-end simulations of WFI survey observations (+supporting 
multiwavelength data?)

TP 2.1 meeting,
lunchtime on Thursday
in the “Printing room”



Take home points

• Athena WFI surveys will identify >400 ‘typical’ AGNs at z >6
• ~100 times faster survey power than Chandra or XMM-Newton.

• Athena will thus trace the growth of early SMBHs at z > 6 and place 
constraints on their formation and growth mechanisms

• Athena is well-matched and complementary to next generation of 
optical/near-IR photometric surveys. A large WFI survey will pinpoint 
AGN accretion activity within samples of high-z galaxies.

• Ongoing work to develop scientific and technical expertise in 
preparation for the Athena era


