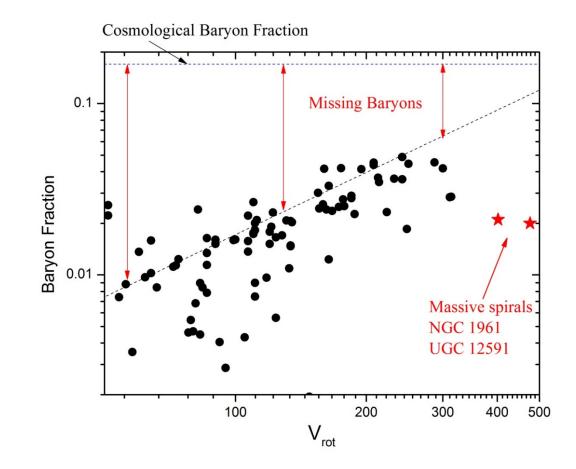
Detecting Missing Baryons Around the Milky Way and External Galaxies

Joel Bregman

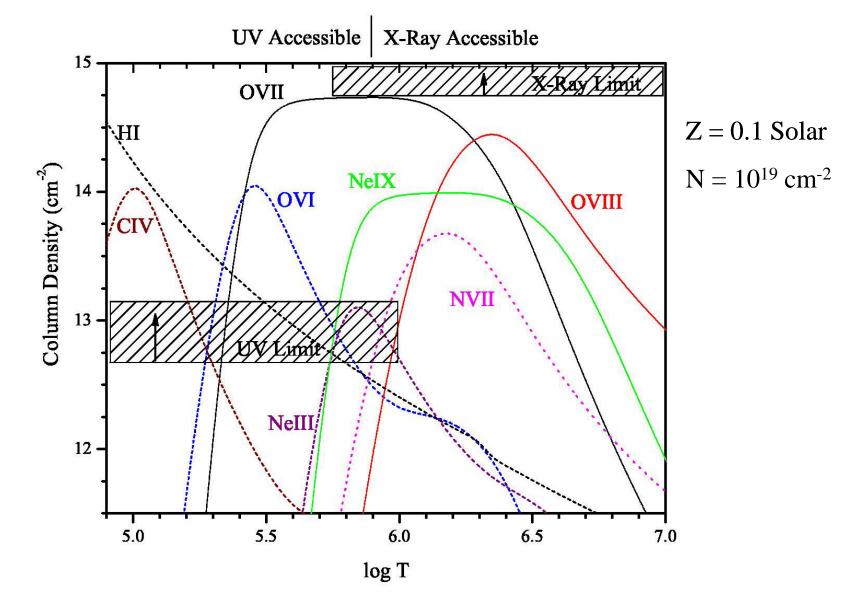

University of Michigan

Collaborators: Mike Anderson, Xinyu Dai, Matt Miller, Edmund Hodges-Kluck, Xinyu Dai

The Missing Baryon Problem(s) at Low Redshift

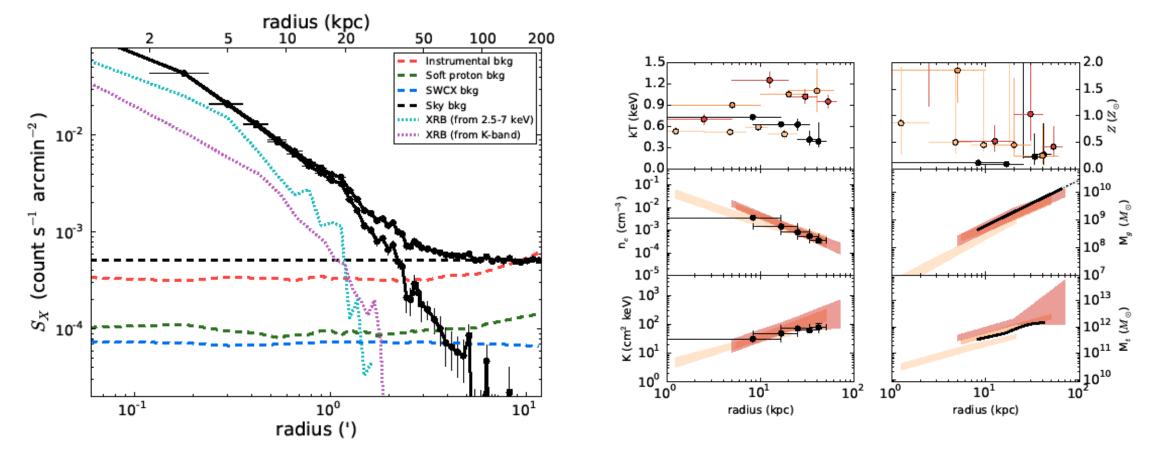
- Galaxies (stars and cold gas) are 10% of the Cosmic Baryons
- About 50% of the known baryons are in gaseous form
 - Galaxy clusters and groups
 - UV absorption line studies
 - galaxy halos and beyond
 - $T < 5 \times 10^5$ K (includes O VI)
- 1st Missing Baryon Problem: Where are the rest of the baryons?

The 2nd Missing Baryon Problem: Individual Galaxies are Missing Most of their Baryons


Rich clusters have nearly all their baryons. Galaxies become increasingly baryon-poor. "Average" spiral (like M33) is missing 90% of baryons

The 3rd Problem: The Missing Metals

- Calculate the Mass of Metals produced over cosmic time
- Compare to baryon density of universe to form a Cosmic Metallicity of the Universe
 - From supernovae (Maoz): 0.09 solar
 - From cosmic star formation history (Shull): 0.16 solar
- Count up all the metals from the visible stars, metal absorption lines, cold disk gas, hot group/cluster gas
 - Calculate the observed cosmic metallicity
 - Result is about 0.015 solar we are missing 90% of the metals!

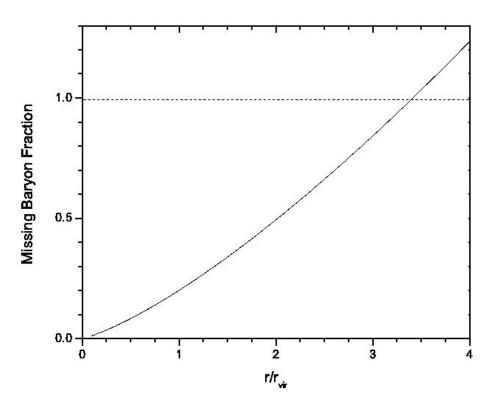

Suggested Resolution of these 3 Problems

- Extensive Previously Undetected Hot Gas Halos (10^{6.5} 10⁷ K) exist around galaxies (Fukugita & Peebles 2006)
- The Cosmic Web has a lot of hot gas
- This hot medium must have an average metallicity of 0.2-0.3 solar to account for the metals in the Universe
- How do we detect this gas?
- X-ray absorption and emission lines, mainly O VII, O VIII, Fe L

To find the rest of the baryons in absorption, need to work in the X-rays; O VII K α (21.6 A), O VIII K α (19.0 A) are the best lines.

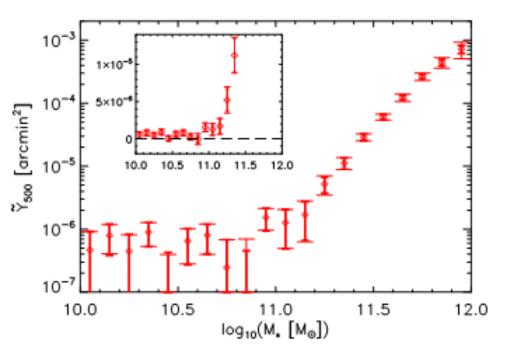
Extended Hot Halos Around Isolated Are Detected

- From Anderson, Churazov, & JNB 2015 (NGC 1961; UGC 12591, others)
- 30% of baryons accounted for at virial radius (still missing most)
- Metallicities of 0.2-0.5 solar (mainly Fe)

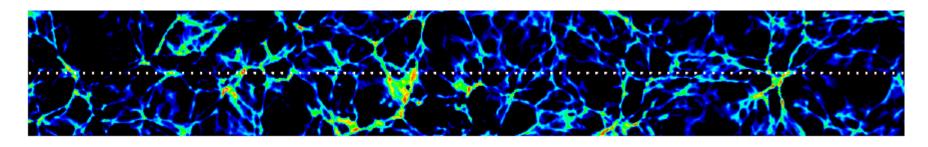

Milky Way Baryon Budget

- From studies of Emission Lines and Absorption Lines (Miller & JNB 2015)
- For a cosmological f_{bar} of 0.157 (Planck 2105)
 - M(stars + cold gas + dust) = 6-7 x 10^{10} M_{\odot}
 - $M_{virial} = 1-2 \times 10^{12} M_{\odot}$
 - $M_{\text{missing}} = 1-3 \times 10^{11} M_{\odot}$
- If the density profile extends to the virial radius...
- M_{hot} = 2-6 x 10¹⁰ M_{\odot}
- Halo gas contributes < 20% to the missing baryons
- Where's the rest?

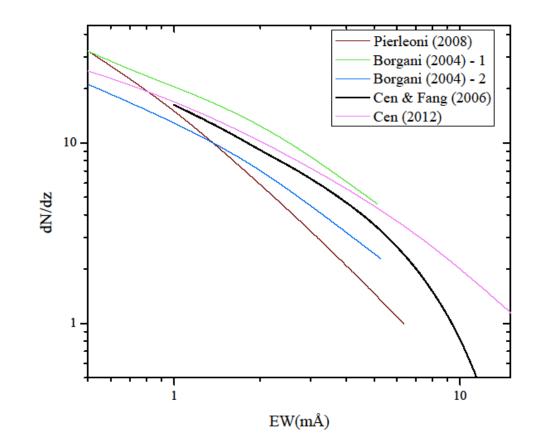
Density and Mass Extrapolation


• Common Hot Halo Gas Properites:

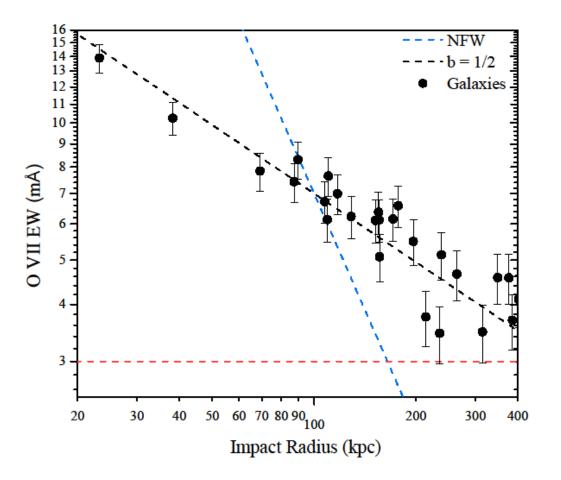
- $\beta = \frac{1}{2}$; n ~ r^{-3/2}
- 20-30% of missing baryons within R_{virial}
- If extended out to 3-5R_{virial} can account for all the baryons
- No reason for baryons to be hot beyond R_{virial}
- Concerns: profile may steepen?
- Is the gas hot beyond R_{virial}?

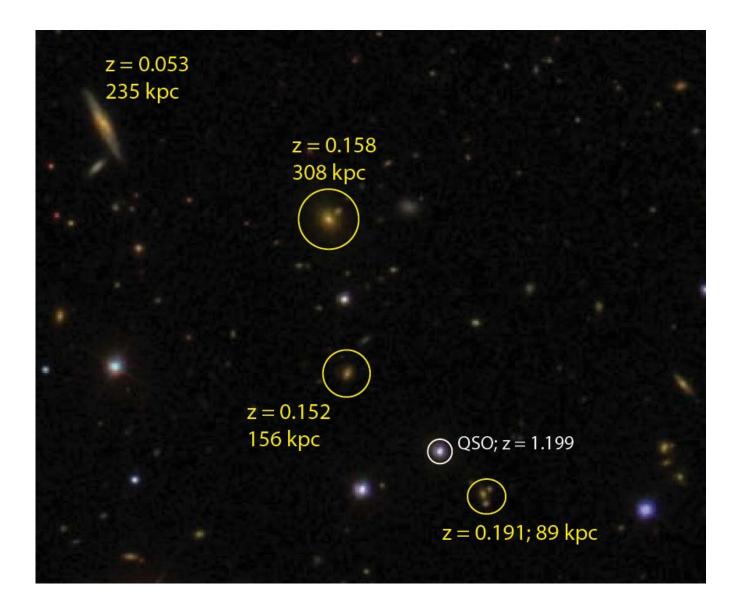

S-Z Effect Shows Galaxy Halos are Hot

- Planck Collaboration (2014); Inter. Results XI (also Greco et al. 2015)
 - 100-217 GHz; resolution 10'
 - Galaxy catalog of Blanton (2005); 260,000
 - Locally Brightest Galaxies -- Stacked
 - Massive galaxies
 - $Y_{500} \propto T_{virial} M_{gas}$
 - Signal for log M* > 11.2
 - Found the baryons!
 - Missing baryons are hot
- Hot baryons extend beyond R_{virial}
- Not much room for a massive cold gas halo


r latter Cortaboration, Gas

Absorption Line Predictions


Line of sight through favorite simulation


- Cosmological simulations with baryons and heating processes (Cen)
- Most absorption: outer parts of groups and from galaxy halos
- O VII: not much absorption above 10 mA
- Desirable to get down to 3 mA

Put the MW Halo Around Other Galaxies

- Extrapolated beyond virial radius
- Absorption lines produced to large radius at > 3 mA
- Actual calculated absorption against the brightest background AGNs
- Bregman et al. (2015)

Instrumental Requirements: Calorimeter

- Science need is to detect a 3-4 mA absorption line at 5 sigma
- Athena: resolution of 250 for a 2 eV detector (2.5 eV requirement; 1.5 eV goal)
- Consider S/N of 100 per resolution element (1 sigma) without systematics
- Line width is probably about 100-200 km/s = resolution of 1500-3000
 - line under-resolved by 10x (no line shape information)
- For a 5 sigma line detection at R = 250 and S/N = 100, line depth is 0.05 and resolution element is 86 mA, so you can detect a <u>4.3 mA line at z = 0</u>, or a 8.3 mA line at z = 1.
- Can map out dN/dz, galaxy halos, in <u>10 Msec</u>

Recommendations for the Athena Calorimeter

- Higher spectral resolution really helps
 - Can we obtain 1 eV resolution for a few of the pixels?
- Must be able to achieve high S/N without systematics
 - Systematics enter only when S/N > 200 would be ideal
- For emission studies, observing in lines (O VIII, Fe L) allows studies of hot galaxy halos to about (or beyond) 100 kpc
 - Need good knowledge of focused and unfocused background