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Many clusters, groups and elliptical galaxies have steéply—peaked

X-ray surface brightness profiles
(X-ray brightness oc density-squared integrated along LoS)

60 arcsec (240 kpc)

T

Abell 1835 observed by Chandra



Cooling times in cluster cores
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Lack of cool X-ray emitting gas
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Slow cooling in the core of the galaxy cluster 2A 0335+096

Image courtesy of Jelle de Plaa, SRON, NL. European Space Agency [l

see also Peterson+01, 03, Kaastra +01, 03, Tamura+01, Sanders+08, 10...



Virgo / M87 1.8 kpc Centaurus 5 kpc

Abell 2597 MS 0735

30 kpc 200 kpc 200 kpc

Cavities seen in cluster X-ray images, filled with radio emission and inflated by AGN jets



What impact do these cavities have?

e Energy required to make a cavity is its enthalpy
— Thermal energy + energy to inflate cavity
— 4PV for relativistic gas

e Buoyancy causes cavity to rise

e Energy is converted into heat on a similar size to
the cavity, via viscosity or turbulence (e.g.
Nulsen+07)

e Plausible timescales for work done on
surroundings are similar
— Sound crossing time
— Buoyancy rise time
— Refill time



Heating power vs cooling luminosity
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Comparison of bubble
heating power to X-ray
luminosity

Energetically, AGN can
prevent cooling in the
majority of objects over
a wide range in X-ray
luminosity



Weak shocks and sound
waves could distribute vTel s B 1 arcmin
heating over the o R Ly d o ' 22 kpc
cooling region |

Fabian+05 -
Sanders & Fabian 2007




Shock and bubble heating in NGC 5813

Randall+15 650 ks Chandra observation of a group

10 kpc

3 sets of cavities and
shocks, with ages of
1.7, 15 and 50 Myr.
Cooling rates and
heating rates
balanced at each
front.
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See also M87, Forman+07
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Centaurus cluster (Sanders et al, submitted), filtered
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Chandra image ofVirgo cluster
(Zhurlivieva et al, 2014},

Heating vs
cooling in
regions

Perseus cluster
Virgo cluster

10-2%7 10-28 10-3 10-#
Radiative cooling rate (erg ecm=3 s-1)

Or turbulence, driven
by the feedback, could
do the heating
(Zhuravleva+14)




g B R ’ L. v i . However, there
e W S oLt 0 s significant
g, ‘ £ age ¢ o sl g " evidence of
Cean WA LOR gt g A T e o€ residual cooling
TE el P TR R o A . =, inmany objects:

... .+ Emission line
: nebulae

iyl o St
. ’ 3 formation

.+ . .. Atomicand
bF T ey molecular gas

'HST P,efsé?u,s_»'(Fébiar.i+08)..f' e F it il ' L P



Key questions identified for Athena

e How is the energy from AGN jets dissipated
and distributed through the hot gas
atmosphere of a cluster or group?

e How does feedback operate to regulate gas
cooling and AGN fuelling?

e What is the cumulative impact of powerful
radio galaxies on the evolution of baryons
from group/cluster formation to now?



Q: How is AGN energy dissipated?

e The heat source in clusters, the AGN, must heat regions
around 9 orders of magnitude larger than itself

e How is the energy from the jets and bubbles dissipated

and distributed from the cluster?

e Can only be examined in X-ray waveband

e Will do spatially-resolved complete calorimetry in
several tens of nearby systems to understand energy
dissipation and heating mechanisms

Energy in cavities

Energy in motions to 10s km/s
Detailed temperature structure
Pressure and density fluctuations



Imaging spectroscopy with X-IFU

Perseus simulated X-IFU image (50 ks)

Spectrum for single 5x5 arcsec region in 50 ks
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* Measure temperature to 1.5% and velocities to 10-20 km/s on scales

<10 kpc in 20-30 nearby systems, and on scales of <50 kpc in hundreds
of clusters and groups



Spatially-resolved line profiles
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Simulated 250ks Cygnus-A observation, based on hydro simulations of Heinz+10

» Characterise spatial scales and velocities of turbulent eddies (>kpc scales)
* Line width gives total kinetic energy in stochastic motions




Characterising ripples and weak shocks

WFI-simulated core of a cluster z = 0.05, based on simulations of Morsony+10,
applying unsharp-masking

* WEFI capable of detecting and characterizing ripples and weak shocks in several
tens of groups and clusters over a wide mass range
e Will allow mechanical energy to be related to environment and AGN properties




Q: How does feedback regulate cooling?
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20 ks simulated X-IFU observation of the Centaurus cluster. The derived temperature
distribution is compared to XMM-Newton RGS observations.

e Understand cooling from ICM and how this fuels the AGN (e.g. Bondi or
molecular gas)

* Compare X-ray gas cooling rates down to a few MK and star formation rates

* Link these to ALMA and JWST measurements of cold gas in these systems

* Examine AGN-induced turbulence and its effect on feedback



Q: What is the cumulative impact of powerful radio galaxies?
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X-IFU spectrum of region shown

In poor environments, jets transfer more energy to their environment than required to
prevent cooling (e.g. Ineson+13) — possible explanation for entropy excess in groups.

Athena will make first direct measurements of advance speed for a strong radio-lobe

shock. Shocks can only be measured in X-rays.




Examining radio galaxies

Temperature map for group
at z=0.1 (20 ks exposure)

Inverse Compton
measurements of magnetic
fields and radio lobe
electrons possible

e Athena will make possible

precise measurements of
shock conditions in large
samples — identify shock
locations, speeds and ages
through temperature mapping
— for first time

Understanding radio galaxy
evolution crucial for next
generation radio surveys and
for realistic modelling of AGN
feedback in cosmological
models



Conclusions

e A robust understanding of mechanical AGN
feedback is essential for understanding galaxy
evolution

e Requires a major advance in X-ray sensitivity and
spectral resolution at high spatial resolution, i.e.
Athena

e Jet feedback models can only be tested directly
with X-ray observations

e Necessary to understand the future surveys of
galaxies and AGN (Euclid, eROSITA, LOFAR, SKA)



