

Exploring the Hot and Energetic Universe: The first scientific conference dedicated to the Athena X-ray observatory

Wide Field Imager for Athena

Norbert Meidinger

on behalf of the WFI proto-consortium

Introduction

ATHENA THE ASTROPHYSICS OF THE HOT AND ENERGETIC UNIVERSE

Europe's next generation X-RAY OBSERVATORY

How does ordinary matter assemble into the large scale structures that we see today?

HOW DO BLACK HOLES GROW AND SHAPE THE UNIVERSE?

- Single **mirror system** focal plane cameras: **X-IFU** and **WFI**
- WFI:
 - unprecedented survey power through large FoV (40` x 40`)
 - excellent count-rate capability
 (≥ 1 Crab)

WFI Functional Block Diagram

Athena conference, Sept. 8th 2015, ESAC/ESA

Wide Field Imager

Field of View (CDF study)

Athena conference, Sept. 8th 2015, ESAC/ESA

WFI conceptual design

Athena conference, Sept. 8th 2015, ESAC/ESA

Focal plane layout

Observation: large or fast WFI

- Rolling shutter mode
- Pixel size **130 μm x 130 μm**

 \Rightarrow accurate source position reconstruction (splits!)

- for PSF = 5" (goal: 3") HEW
- DEPFETs thermally decoupled from FEE

Athena conference, Sept. 8th 2015, ESAC/ESA

Wide Field Imager

WFI detector assembly

DEPFET APS Detectors: Concept

- \circ p-FET on depleted n-bulk
 - └→ back-side illuminated
 - → signal charge collected in "internal gate"
 - └→ reset via ClearFET

DEPFET Detector: Energy resolution

Standard DEPFET pxd5, 64x64 pixel Asteroid (→ VERITAS2)

Heritage: MIXS DEPFET detectors on BepiColombo

Aim: **512 x 512** matrix + 2x **faster** readout

Athena conference, Sept. 8th 2015, ESAC/ESA

Wide Field Imager

N. Meidinger

Large FoV detector

- 40` x 40` by 1024 x 1024 pixel
- 4 independent + identical quadrants
- Insensitive regions \rightarrow observation with dither pattern
- 2-side buttable DFPFFTs
- Switcher under redesign
- VERITAS-2 under develoment 2.5 μ s/row \rightarrow **1.3 ms / frame**
- Prototype large DEPFET designed + currently produced at

Simulation of Chandra Deep Field South (SIXTE, 100ks) Lissajous dither pattern (4 amin amplitude)

by Rau, Dauser

Athena conference, Sept. 8th 2015, ESAC/ESA

Wide Field Imager

N. Meidinger

High count-rate capable detector

- 64 x 64 pixel (FoV: 143`` x 143``)
- "split full frame mode" \rightarrow time resolution: 80 µs
- gateable DEPFET with add. signal storage region
 → better spectral response
- Concepts:
 - A. 2 DEPFETs per pixel: readout \leftrightarrow charge collection
 - B. Signal charge transferred to internal gate
 - Status: Proof-of-concept DEPFETs successfully produced
 - \rightarrow under test
 - \rightarrow design & production of $\ {\rm prototype} \ {\rm fast} \ {\rm DEPFET}$

 SWITCHER
 SWITCHER

 SWITCHER
 SWITCHER

 SWITCHER
 SWITCHER

 SWITCHER
 SWITCHER

 SWITCHER
 SWITCHER

 SWITCHER
 SWITCHER

Athena conference, Sept. 8th 2015, ESAC/ESA

Wide Field Imager

N. Meidinger

High count-rate capability

WFI light blocking filter

DEPFET sensitive to **visible light + UV light** \Rightarrow blocking filter necessary

on-chip: 90 nm Al + 20 nm Si_3N_4 + 30 nm SiO_2

external filter (160 mm x 160 mm): 40 nm Al + 200 nm Pl + mesh 95%

Blocking filter	on-chip filter	external filter	combination	
Visible light	T = 3 x 10 ⁻⁵	T = 10 ⁻²	T = 3 x 10 ⁻⁷	Barbera
UV light: 643A	T = 4 x 10 ⁻⁴	T = 6 x 10 ⁻⁷	T = 3 x 10 ⁻¹⁰	et al.
UV light: 1932A	T = 2 x 10 ⁻⁵	T = 9 x 10 ⁻⁶	T = 2 x 10 ⁻¹⁰	SPIE 2015

 \rightarrow permits observations of hot stars (m_v = 2)

Alternative solution w/o mesh:

Launch filter + detector evacuated like EPIC PN-camera on XMM-Newton

 \Rightarrow Vacuum vessel: higher mass for WFI + 'single point failure'-risk

WFI Quantum Efficiency

Back-illuminated DEPFET chip; 450 μm thickness fully depleted

Athena conference, Sept. 8th 2015, ESAC/ESA

Thermal design

Passive cooling with heat pipes and radiators → no limited lifetime

- Focal plane sensors @ T=190K
- FEE @ T=250K
- DE and ICPU @ T=280K

Heat pipes:

- standard ammonia heat pipes for FEE + DE + ICPU
- o ethane heat pipes for sensor cooling
- \Rightarrow WFI radiator area: **3** m²

Wide Field Imager

eROSI

Detector electronics

- **Power conditioning** for DEPFET + FEE ASICs
- Data processing:
 - Realtime pre-processing: **205** Mpixel/s per quadrant !!!

Athena conference, Sept. 8th 2015, ESAC/ESA

Wide Field Imager

MPI

WFI model philosophy

BB model (- 2018) → TRL5 for DEPFET, frame processor, OBF EM, STM, EFM (2019-2021) QM (2022-2024) FM (2025-2026) FS of critical components/subsystems

Main technical budgets			
Power (incl. 20% margin)	570 W (684 W)		
Mass (incl. 20% margin) w/o radiators + heat pipes	190 kg (228 kg) 227 kg (273 kg) if vacuum vessel option		
Size (w/o radiator) L x W x H	1.2 m x 0.8 m x 1.0 m		
Data rate	Science: 10 kbit/s – 2 Mbit/s HK: 3 kbit/s		

Project organization

Milestones: MCR: 05/2016 Instrument AO: late summer 2016 WFI TDA: till 2018 Mission adoption envisaged for 2020

WFI proto-consortium:

Austria, Denmark, France, Great Britain, Italy, Poland, and Germany

+ potential partners: USA, Japan, and Portugal

WFI lead institute: MPE

PI: Kirpal Nandra

PM: Norbert Meidinger

- SI: Markus Plattner
- PS: Arne Rau

WFI consortium board

WFI science team

http://www.mpe.mpg.de/ATHENA-WFI/index.html

Systems Engineering Product Assurance Data Analysis 8 Evaluation 14000 Soft- & 21000 round Suppr 13000 ICPU 16000 Thermal & Mechanics Simulati (Phase E+F 11010 16010 ADC Array 8 tral Proce Module trument Fligh Software amera H GSE IV & Operati UOL/USA 7 12020 me Proce or Elec EGSE Thermal Syste UOL / P / Japar 12030 16021 hermal Rad 12040 Housing 21500 Data Analysis S DTI 13050 Harness SRO Uo 13060 Housing Ground Support 🔲 OU CE/ WFI Flight System

WFI (ATHENA Pavload)

Athena conference, Sept. 8th 2015, ESAC/ESA

Wide Field Imager

N. Meidinger

Main WFI Requirements + Characteristics

Parameter	Value
Energy range	≈ 0.1 keV - 15 keV
Pixel size	130 μm x 130 μm pixel size (corr. to 2.2`` x 2.2``)
Operating time	nonstop
Operating mode	rolling shutter
Large FoV detector	FoV: 40` x 40` → 1024 x 1024 pixel (4 quadrants) readout: full frame mode; optional: window mode non-gateable DEPFET type time resolution: 1.3 ms
High count-rate capable detector	64 x 64 pixel → FoV: 143 ^{**} x 143 ^{**} readout: split full frame gateable DEPFET type with add. signal storage region time resolution: 80 μs 1 Crab: >90% throughput; <1% pile-up (PSF defocused)
Quantum efficiency incl. ext. filter	>20% @ 277 eV >80% @ 1 keV >90% @ 10 keV
Transmission	visible light: T = 3 x 10 ⁻⁷ UV light (643 A - 1932 A): T < 10 ⁻⁹
Non X-ray background (L2 orbit)	$< 5 \times 10^{-3} \text{ cts cm}^{-2} \text{ s}^{-1} \text{ keV}^{-1}$
Energy resolution	FWHM(5.9 keV) ≤ 150 eV

MPE