

Constraining the dense matter equation of state with ATHENA-WFI observations of neutron stars in quiescent LMXBs

S. Guillot 1, F. Özel 2

¹ Instituto de Astrofisica, Pontificia Uni. Católica de Chile, ² University of Arizona

The X-ray thermal emission from neutron stars (NSs) in quiescent low-mass x-ray binaries (qLMXBs) allows us to place constraints on the dense matter equation of state (dEoS). This science goal of ATHENA requires combining the M_{NS} - R_{NS} measurements from qLMXBs. I present simulated observations of known qLMXBs, and how well the dEoS can be reconstructed from ATHENA observations of these qLMXBs.

Quiescent Low-Mass X-ray Binaries

The <u>thermal emission</u> from the NS surface dominates the X-ray emission of qLMXBs.

NSs in qLMXBs are powered by deep crustal heating, radiating energy through an H-atmosphere.

X-ray spectral analyses of qLMXBs inside globular clusters provide R_{∞} measurements to constrain the dEoS.

From M_{NS}-R_{NS} Measurements to Dense Matter Equation of State

Solving the equations of stellar structure in a relativistic regime:

$$\begin{split} \frac{dP}{dr} &= -G\,\frac{\rho(r)M(r)}{r^2}\left(1 + \frac{P(r)}{\rho(r)}\right)\left(1 + \frac{4\pi r^3 P(r)}{M(r)}\right)\left(1 - \frac{2GM(r)}{r}\right)^{-1}\\ \frac{dM}{dr} &= 4\pi r^2 \rho(r) \end{split}$$

Using a Bayesian approach, we solve for $P(\rho)$ by finding P_1 , P_2 , P_3 at three fiducial densities ρ_1 , ρ_2 , ρ_3 , given the measured $M_{\rm NS}(R_{\rm NS})$:

$$\mathcal{P}\left(P_{1}, P_{2}, P_{3}\right) \propto \prod_{i=1}^{N} \int_{M_{\min}}^{M_{\max}} \mathcal{P}_{i}\left(M, R | P_{1}, P_{2}, P_{3}\right) \mathcal{P}_{\text{prior}}(M) dM$$

Simulated Observations

Simulated M_{NS}-R_{NS} contours measured from ATHENA observations of 8 known NSs with known properties.

Exposure time necessary for at least ~50 000 counts. Total exposure needed = 550 ksec.

Analysis Assumptions

Slowly-rotating neutron stars:

Emission spectrum possibly distorted for $P_{spin} < 3 \text{ ms.}$

Low magnetic field neutron stars (B~108 G):

No evidence of high magnetic field (X-ray pulsations, etc...).

Isotropic surface emission:

Source of heat deep inside NS creates isotropic emission.

Globular cluster distance measurements:

Expected GAIA precision on GC distance: ~2%. 2% uncertainties included in the M_{NS}-R_{NS} contours.

Pure hydrogen atmosphere:

H-rich matter transferred from main-sequence companion. Heavier elements stratify within 10 sec.

Results

Best-fit inferred dEoS from 8 NS contours without calibration flux uncertainties.

Best-fit inferred dEoS from 8 NS contours with 10% systematics added on the M_{NS}-R_{NS} contours.

$$\frac{\Delta R_{\rm NS}}{R_{\rm NS}} = \pm 3\% \ \ {\rm at} \ \ 1.4 \, M_{\odot}$$

Selection of references on the subjects related to this work:

- Deep crustal heating: Brown et al. 1998;
- Neutron star atmosphere models: Zavlin et. al 1996; Heinke et al. 2006; Haakonsen et al. 2012.
- Roo measurements: Heinke et al. 2006; Webb & Barret 2007; Guillot et al. 2011; Servillat et al. 2012; Guillot et al. 2013, Heinke et al. 2014.
- Equation of state inversion: Read et al. 2009; Özel et al. 2009, 2010; Steiner et al. 2010, 2013; Özel et al. 2015.

