The Hot Universe: from Cosmological Filaments to Clusters

T. Ohashi (TMU)

Key question and talk plan

- How does ordinary matter assemble into the large scale structures that we see today?
 - Kaastra: missing baryons and WHIM
 - Pointecouteau: Evolution of groups and clusters
 - Eckert: Astrophysics of groups and clusters
- This talk
 - Structural/thermal evolution cluster outskirts, shocks
 - Chemical evolution metal enrichment
 - WHIM tracer of large scale structure
 - Athena to follow ASTRO-H (and possibly DIOS)

Clusters in large-scale structure

125 Mpc/h

Galaxy Cluster

Virgo Consortium, Springel et al. 05

Our understanding of the hot Universe

Cluster outskirts are the frontier

D. Nagai: SnowCluster 2015 Splashback radius: drop of DM density, corresponds to accretion shock

Observed entropy profiles

Suzaku observations show entropy drops in the cluster outskirts, but not so clear for groups lon-electron temperature difference, gas clumpiness, or other reason of non equilibrium Athena will measure this with >10 times more area

Spectral resolution: He-like triplet

studied (satellite lines)

 T_{e} (MK)

 $n_{e} (cm^{-3})$

• Profile of FeXXV, XXIV complex is resolved

 Resonance and forbidden lines are separated Ion temperature Deviation from Maxwellian

Turbulence in Clusters

Perseus cluster (r<2', 100ks) Turbulence and temperature structure

Abundance pattern should evolve in time

Clear evidence of metal enrichment history will be provided by high sensitivity observations

Elemental distribution in clusters

Cluster gas is very metal-rich, and high sensitivity of Athena will show detailed (patchy?) metal distribution in clusters

SXS FOV

Centaurus cluster simulation for ASTRO-H: very high metal abundance in the center

Enrichment by galactic winds

- Starburst galaxies: enrichment and heating of intergalactic space (and clusters) with galactic winds
- All galaxies experience such a period → feedback in the universe
- Athena will measure gas velocity, metal abundance and heating effect with high precision

ASTRO-H: M82 200 ks simulation for wind velocities 0 (black) and 500 (red) km/s

M82 (Xray: blue, IR: red, Opt: white)

Spectral resolution: Charge exchange

Collision of ion and neutral atom

- Large cross section (10⁻¹⁶ cm²)
- Stellar wind and planetary gas
- Hot wind and neutral gas
- -- highly ionized lines and forbidden lines are strong

 $O^{+7} + H \rightarrow O^{+6*} + p$

Cosmic structure

<u>WHIM</u> (10⁵-10⁷ K) traces the cosmic large-scale structure

= "Missing baryon"

Typical matter density: $\delta (=n/\langle n_B \rangle) = 10 - 100$

Yoshikawa et al. 2001, ApJ, 558, 520

```
size = 30 h^{-1} Mpc
\approx 5 \text{ deg at } z=0.1
```

Dark matter

Galaxies (~10⁴K)

Cluster gas (10⁷K)

Plasma processes and spectroscopy

ASTRO-H will fly in early 2016

DIOS: dark baryon surveyor

Satellite mass: 800 – 900 kg FOV: 30 – 50 arcminmin Area: 200 – 1000 cm² Angular resolution: 3 – 5 arcmin WHIM emission + GRB afterglow Spectroscopy of bright or extended objects

Technology demonstration for Athena

ASTRO-H (2016)

Si calorimeter 36 pix, 7 eV He + ST/JT + 3ADR DIOS (2022-23)

TES calorimeter 256 pix, 2-5 eV time domain mpx Cryogen free ST/JT + 3ADR TES calorimeter 3800 pix, 2-3 eV freq domain mpx Cryogen free ST/JT + Sorption+ADR or Dilution

Athena

2028-)

Summary

- Athena will open many new features about how the "Hot Universe" has been formed over the cosmic time scale.
- Athena brings substantial improvement in all sensitivity axis (effective area, angular resolution, and energy resolution).
- What I have introduced here are only small examples, and much more will be presented later.
- Finally, let us hope the successful launch of ASTRO-H, which will show us the power of microcalorimeters.