
Clouds and Science:

Opportunities and Obstacles

Daniel S. Katz

d.katz@ieee.org

TeraGrid GIG Director of Science

Senior Fellow,

Computation Institute,

University of Chicago & Argonne

National Laboratory

Daniel S. Katz

Goal

• Convince you that clouds are useful for science

• But, some clouds are better than others for some

applications

• Or, different types of applications fir on different types of

clouds

• Tell you about two applications

• Finite Difference Time Domain (FDTD) Electromagnetics

• Montage (astronomical image mosaics)

• Think about what is important about clouds

• How applications are developed and mapped

Daniel S. Katz

Cloud basics

• NIST definition:

• a computing capability that provides an

abstraction between the computing resource

and its underlying technical architecture (e.g.,

servers, storage, networks), enabling

convenient, on-demand network access to a

shared pool of configurable computing

resources that can be rapidly provisioned and

released with minimal management effort or

service provider interaction

Daniel S. Katz

Clouds vs. Grids

• Rich Wolski’s assertion: Clouds and Grids are distinct

• Cloud

• Individual user can only get a tiny fraction of the total resource pool

• No support for cloud federation except through the client interface

• Opaque with respect to resources

• Grid

• Built so that individual users can get most, if not all of the

resources in a single request

• Middleware approach takes federation as a first principle

• Resources are exposed, often as bare metal

• These differences mandate different architectures for each

Credit: Rich Wolski, Eucalyptus Systems

Daniel S. Katz

Clouds

Daniel S. Katz

Outline

• Electromagnetics (FDTD): Sequential -> Parallel

• Astronomy (Montage): Parallel -> Grid

• Clouds

Daniel S. Katz

Electromagnetics

• Maxwell’s Equations

• Lots of versions, pick the right set for your problem and methodology

• Wavelength and frequency are inversely related

• An object of size 1 m is one wavelength long at 300 MHz or 2

wavelengths long at 150 MHz

• Either frequency or size can be scaled as needed

• Radar Cross Section (RCS) as an example problem

• A plane wave at some incident angle and some frequency

illuminates a target.

• Monostatic or Backscatter RCS: what energy comes back?

• Bistatic RCS: what energy goes off in another direction?

Daniel S. Katz

Dielectric

Lens

• Dielectric lenses can be made in

different materials with different

properties

• Above quantum well infrared

photodetector (QWIP), can

increase QWIP sensitivity by 14x

• 20 THz plane wave incident

downward

Image: Scanning Electron Microscope (SEM) of a portion of the

dielectric lens (credit: Dan Wilson, JPL Microdevices Laboratory)

Daniel S. Katz

Maxwell’s Equations in Curl

Form

• Maxwell’s (curl) Equations:

= Electric field vector

= Magnetic flux density vector

= Electric flux density vector

= Magnetic field vector

• In linear, isotropic, non-dispersive media

B

t
 E

D

t
 H

B H

D E

E

B

D

H

magnetic permeability

 electric permeability

Daniel S. Katz

Maxwell’s Equations in Curl

Form

Writing out the vector components:

H

t

1

 E

E

t

1

 H

Hx

t

1

Ey

z

E z

y

Hy

t

1

E z

x

Ex

z

Hz

t

1

Ex

y

Ey

z

Ex

t

1

Hz

y

Hy

z

Ey

t

1

Hx

z

Hz

x

E z

t

1

Hy

x

Hx

y

(image from wikipedia)

• Assume E only has a z component, and that

everything is constant in y:

Hy

t

1

Ez

x

Ez

t

1

Hy

x

Daniel S. Katz

1-D FDTD

• Apply 2nd order differencing

Hy

t

1

Ez

x

Ez

t

1

Hy

x

Daniel S. Katz

1-D FDTD details

• Non-rigorously:

• Energy should not propagate more than one spatial step in each

temporal step

•

• Computer implementation:

x
1

c
t

Daniel S. Katz

1-D FDTD Code

• Define media (ca, cb)

• Initialize fields to zero

• Loop over time (n = 1 to nmax)

• Loop over space for ez (i=0 to imax)

• ez[i] += ca[i]*(hy[i]-hy[i-1])

• Loop over space for hy (i=1 to imax-1)

• hy[i] += cb[i]*(ez[i+1]-ez[i])

Daniel S. Katz

1-D FDTD Code - BC

• What about Ez[0] and Ez[imax]?

• We need boundary conditions to ensure that waves

propagate past these points without reflecting

• Simple choice, if dt/dx=c

• Ezn[0] = Ezn-1 [1]

• Mathematic/geometric option in 2d and 3d

• Mur RBC (1981) – Mur RBC

• Model absorbing material (virtual range)

• Berenger (1994) – Berenger PML

Daniel S. Katz

• How to input energy into the system?

• Use a hard source

• ez[10] = cs*sin(omega*dt*timestep)

• Simple, but leads to reflections

• Use a soft source

• Ampere’s Law

• Apply finite differences

• Separate into normal update and additive source

• ez[i] += ca[i]*(hy[i]-hy[i-1])

• ez[10] += cs*sin(omega*dt*timestep)

1-D FDTD Code - Inputs

Daniel S. Katz

1-D FDTD Code - Scatterers

• How to find scattered field?

• Use a total field / scattered field formulation for the

main grid

• Compute two 1-D grids, one for the incident field and

one for the total/scattered field

• Incident grid is homogeneous; TF/SF grid has

scatterer geometry

• Add/subtract incident field on total field/scattered field

boundaries

Daniel S. Katz

1-D FDTD Code – Scatterers (2)

• eztotal[50] += ca[50]*(hytotal[50]-hytotal[49])

• Correct update from difference equation, but doesn’t

match grid

• hytotal[49] = hyinc[49] + hyscat[49]

• eztotal[50] += ca[50]*(hytotal[50]-hyscat[49]) (normal update)

• eztotal[50] -= ca[50]*hyinc[49] (special update for TF/SF interface)

• Similar changes needed for hy[49] update, and ez

and hy at TF/SF interface on right side of grid

Daniel S. Katz

Parallel FDTD

• Try to use: 286-based
hypercube from Intel

• Spring 1987-88

• We had 16 nodes (iPSC/d4)

• Used isend and irecv call to
communicate data from one
node to another

• Had previously vectorized code,
and also used shared-memory
parallelism (now OpenMP)

Photo from Paul Pierce (http://www.piercefuller.com/collect/other.html)

Daniel S. Katz

Ghost Cells (2D)

• Parallel Implementation

• Need to update these

cells on a given

processor, using second

order central differences

(one cell on each side)

• In order to update outer

cells, need cells one

step further away

• These have to be

communicated from

neighboring processors

19

i

j

Daniel S. Katz

Load Balancing

• How to divide this

domain for 4 procs?

• MPI: worry about

• Memory

• Work

• Communication

i

j

Daniel S. Katz

Parallel FDTD Modeling Example:

Periodic Plasmonic System

3D FDTD domain of unit cell

and domain decomposition

wraparound

boundary

conditions for side

domain walls. PML

for top and bottom

boundary

Result:

3D intensity distribution

(front quarter section is

cut out to show inner

gold structure)cross-sectional

view

plane wave

excitation

scattering and

near-field

interactions

gold

polymer

ideal

speed-up

strong scaling result (overall domain size:

262 × 262 × 1040 grid cells)

Credit: Tae-Woo Lee

Daniel S. Katz

FDTD Summary

• Series of loops over components in time stepping loop

• Simple idea, complex in coding

• Fixed-side physical domain

• Usage model – set up simulation, run it, then examine

output data

• Domain decomposition leads to static mapping to

processors

• Tightly-coupled (alternating computation/communication)

• Load balancing is complex in practice

• Common to use MPI now

Daniel S. Katz

Outline

• Electromagnetics (FDTD): Sequential -> Parallel

• Astronomy (Montage): Parallel -> Grid

• Clouds

Daniel S. Katz

Montage
• An astronomical image mosaic service for the

National Virtual Observatory

• Project web site - http://montage.ipac.caltech.edu/

• Core team at JPL (NASA’s Jet Propulsion Laboratory) and Caltech

(IPAC - Infrared Processing and Analysis Center, CACR - Center for

Advance Computing Research)

• Grid architecture developed in collaboration with ISI - Information

Sciences Institute

• Attila Bergou - JPL

• Nathaniel Anagnostou - IPAC

• Bruce Berriman - IPAC

• Ewa Deelman - ISI

• John Good - IPAC

• Joseph C. Jacob - JPL

• Daniel S. Katz - JPL

• Carl Kesselman - ISI

• Anastasia Laity - IPAC

• Thomas Prince - Caltech

• Gurmeet Singh - ISI

• Mei-Hui Su - ISI

• Roy Williams - CACR

Daniel S. Katz

What is Montage?
• Delivers custom, science grade image mosaics

• An image mosaic is a combination of many images containing individual pixel data so that they
appear to be a single image from a single telescope or spacecraft

• User specifies projection, coordinates, spatial sampling, mosaic size, image rotation

• Preserve astrometry (to 0.1 pixels) & flux (to 0.1%)

D
a
v
id

 H
o
c
k
n
e
y
 P

e
a
rb

lo
s
s
o
m

 H
ig

h
w

a
y

1
9
8
6

• Modular, portable “toolbox” design

• Loosely-coupled engines for image

reprojection, background

rectification, co-addition

• Control testing and

maintenance costs

• Flexibility; e.g custom background

algorithm; use as a reprojection

and co-registration engine

• Each engine is an executable

compiled from ANSI C

• Public service deployed

• Order mosaics through web portal

Daniel S. Katz

Use of Montage

• Scientific Use Cases

• Structures in the sky are usually larger than individual
images

• High signal-to-noise images for studies of faint sources

• Multiwavelength image federation

• Images at different wavelengths have differing parameters
(coordinates, projections, spatial samplings, . . .)

• Place multiwavelength images on common set of image
parameters to support faint source extraction

Daniel S. Katz

Montage Use by Spitzer

E/PO Group

100 µm sky;

aggregation of

COBE and IRAS

maps (Schlegel,

Finkbeiner and

Davis, 1998)

360° x 180°,

CAR projection

Panoramic view of galactic plane as seen by 2MASS, 44° x 8°, 158,400 x 28,800 pixels; covers 0.8% of sky

Daniel S. Katz

Montage Versions

• Montage version 1.0 emphasized accuracy in photometry
and astrometry

• Images processed serially

• Extensively tested and validated on 2MASS 2IDR images on Red
Hat Linux 8.0 (Kernel release 2.4.18-14) on a 32-bit processor

• Montage version 2.2

• More efficient reprojection algorithm: up to 30x speedup

• Improved memory efficiency: capable of building larger mosaics

• Enabled for parallel computation with MPI

• Enabled for processing on TeraGrid using standard grid tools

• Montage version 3.0

• Utilities and bug fixes

• Code and User’s Guide available for download at
http://montage.ipac.caltech.edu/

Daniel S. Katz

1
2

3

mProject 1 mProject 2 mProject 3

mDiff 1 2 mDiff 2 3

mFitplane D12 mFitplane D23

ax + by + c = 0 dx + ey + f = 0

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

a3x + b3y + c3 = 0

mBackground 1 mBackground 2 mBackground 3

D12
D23

Montage Workflow

mConcatFit

mBgModel

ax + by + c = 0

dx + ey + f = 0

mAdd 1 mAdd 2

Final Mosaic

(Overlapping Tiles)

Daniel S. Katz

Montage on a Grid

• “Grid” is an abstraction

• Array of processors, grid of clusters, …

• Use a methodology for running on any “grid environment”

• Exploit Montage’s modular design in an approach applicable to any grid

environment

• Describe flow of data and processing (in a Directed Acyclic Graph - DAG), including:

• Which data are needed by which part of the job

• What is to be run and when

• Use standard grid tools to exploit the parallelization inherent in the Montage design

• Build an architecture for ordering a mosaic through a web portal

• Request can be processed on a grid

• This is just one example of how Montage could run on a grid

Daniel S. Katz

Montage on the Grid Using

Pegasus

Example DAG for 10 input files

mAdd

mBackground

mBgModel

mProject

mDiff

mFitPlane

mConcatFit

Data Stage-in nodes

Montage compute nodes

Data stage-out nodes

Registration nodes

Pegasus

Grid Information

Systems
Information about

available resources,

data location

Grid

Condor DAGMan

Maps an abstract workflow

to an executable form

Executes the workflow

MyProxy

User’s grid credentials

http://pegasus.isi.edu/

Daniel S. Katz

Montage Performance on Large

Problem

0:00:00 0:03:00 0:06:00 0:09:00 0:12:00 0:15:00 0:18:00 0:21:00 0:24:00 0:27:00

Time from Start (h:m:s)

mImgtbl

mProjExec

mImgtbl

mOverlaps

mDiffExec

mFitExec

mBgModel

mBgExec

mImgtbl

mAdd

M
o

d
u

le
 N

a
m

e

MPI run of M16, 6 degrees on 64 TeraGrid processors

Daniel S. Katz

Montage Performance on Large

Problem

0:00:00 0:03:00 0:06:00 0:09:00 0:12:00 0:15:00 0:18:00 0:21:00 0:24:00 0:27:00 0:30:00

Time from Start (h:m:s)

mDag

Pegasus

mProject

mDiffFit

mConcatFit

mBgModel

mBackground

mImgtbl

Madd

M
o

d
u

le
 N

a
m

e

Pegasus run of M16, 6 degrees on 64 TeraGrid processors

Daniel S. Katz

Timing Discussion

• Both MPI and Pegasus timings ignore time to start job (queuing delay)

• MPI - script is placed in queue

• Pegasus - Condor Glide-in is used to allow single processor jobs to work on pool

• For efficiency, jobs are clustered and each cluster is submitted to the pool

• Condor overhead for each item submitted is between 1 and 5 seconds

• Tasks are different

• MPI - mImgtbl, mProjExec, mImgtbl, mOverlaps, mDiffExec, mFitExec, mBgModel,

mBgExec, mImgtbl, mAdd

• *Exec tasks are parallel tasks, others are sequential

• Flow is dynamic, based on resulting files from previous stages

• Pegasus - mDag, Pegasus, mProject(s), mDiffFit(s), mConcatFit, mBgModel,

mBackground(s), mImgtbl, mAdd

• *(s) tasks are multiple, clustered by Pegasus/Condor

• Flow is fixed, based on output of mDag

• Gaps between tasks - not important, tasks are long compared to gaps

• Accuracy is very uncertain, as the parallel file system is being hit harder

• Overall

• MPI - job finishes in 00:25:33

• Pegasus - job finishes in 00:28:25

Daniel S. Katz

Newer Montage Work

• C. Hoffa, G. Mehta, E. Deelman, T. Freeman, K. Keahey,

B. Berriman, J. Good, “On the Use of Cloud Computing for

Scientific Workflows,” SWBES08: Challenging Issues in

Workflow Applications, 2008

• Ran Montage on virtual and physical machines, including a private

cloud-like system

• Montage used as prototype application by teams involved

in ASKALON, QoS-enabled GridFTP, SWIFT, SCALEA-G,

VGrADS, etc.

Daniel S. Katz

Montage Summary

• Montage is a custom astronomical image mosaicking service that emphasizes

astrometric and photometric accuracy

• Public release, available for download at the Montage website:

http://montage.ipac.caltech.edu/

• MPI version of Montage:

• Best performance

• Requires a set of processors with a shared file system

• Pegasus/DAGman version of Montage:

• Almost equivalent performance for large problems

• Built-in fault tolerance

• Can use multiple sets of processors

• Grid version works: flexible, efficient

• Local usage is still easier, mixed mode is common

• Some processors local for known work, grid for excess/unknown work

Daniel S. Katz

Outline

• Electromagnetics (FDTD): Sequential -> Parallel

• Astronomy (Montage): Parallel -> Grid

• Clouds

Daniel S. Katz

Clusters, Grid, and Clouds

Cluster Grid Cloud

Queue yes yes no
(Resources scarce scarce abundant)

Coupling tight loose loose

Dynamic no no/yes yes (but no?)

OS/tools physical physical virtual

Not clear that these are intrinsic to clouds, but seem

to be correct for current commercial clouds, such as

Amazon EC2; maybe different for private clouds

(w/ Eucalyptus, Nimbus, etc.)

Daniel S. Katz

MPI benchmarks on Clouds

• NAS Parallel Benchmarks, MPI, Class B

E. Walker, “Benchmarking Amazon EC2 for High-Performance Scientific Computing,” ;login:, 2008.

Daniel S. Katz

What about Queues

• Prediction for completion of LU (runtime = 25 sec

on cluster, 100 sec on EC2)

• Queue time = ?? on cluster, 300 sec on EC2

I. Foster, “What's faster--a supercomputer or EC2?”, http://ianfoster.typepad.com/blog/2009/08/whats-fastera-supercomputer-or-ec2.html, August 5, 2009

Daniel S. Katz

NSF Clouds

• FY08 – Cluster Exploratory (CluE) program: cloud-based

software services supported by Google and IBM

• Linux, Hadoop, PaaS

• and access to another cluster supported by HP, Intel, and

Yahoo housed at the University of Illinois at Urbana-

Champaign

• Linux, Hadoop, IaaS & PaaS

• FY09 – Data-intensive Computing Program: explore new

ways to design, develop, use, and evaluate large cluster

platforms and systems, especially to support data-

intensive applications that require very large-scale clusters

• FY10 – Access to Windows Azure platform
• Windows, Azure, PaaS

Daniel S. Katz

DOE Magellan: Where do clouds

fit?

• Extreme-scale platforms fit extreme-scale problems

• Need a handful of nodes? That small cluster down the hall is perfect

• What about the mid-range?

• Unique and customized software stacks?

• Data-intensive computing?

• Infrequent big runs

This supercomputer

is too big!

This cluster is too small!

Credit: Pete Beckman, ANL

Daniel S. Katz

Unique Characteristics of ALCF

Magellan

• High-speed, low-latency interconnect

• QDR Infiniband connection to all nodes

• High-performance storage

• Solid-state storage

• High-performance parallel file system

• High-bandwidth wide area networking

• Direct connection to 20-Gbps ESnet, eventually

100-Gbps

• Tuned middleware and scientific software

Credit: Pete Beckman, ANL

Daniel S. Katz

MPI Clouds

• Penguin on Demand

• “HPC as a Service”

• A virtualized, scalable cluster available on demand that operates

and has the same performance characteristics as a physical HPC

cluster located in a machine room

• Tries to group processes to take advantage of interconnects

• Includes support with HPC expertise

• SGI Cyclone

• HPC as a Service

• Either SaaS (technical apps/support) or IaaS (clusters w/

accelerators)

Daniel S. Katz

Montage Cloud Challenges

• Implementation and tools are not general

• Development - could have been simpler

• mDAG is not a simple code

• Could have used Pegasus DAX API, but didn’t seem any simpler

• No way to make runtime decisions based on data

• Deployment and Execution

• Want to use other infrastructures, such as clouds

• Want to make runtime decisions based on resources

• Provide better fault tolerance than rescue DAG

• Want to control resources (e.g., networks)

• Started looking at these – led to: A. Merzky, K. Stamou,

S. Jha, D. S. Katz, “A Fresh Perspective on Developing

and Executing DAG-Based Distributed Applications:

A Case-Study of SAGA-based Montage,” Proceedings of

5th IEEE International Conference on e-Science, 2009

Daniel S. Katz

Distributed Applications (Montage)

Development Objectives

• eSI theme – Distributed Programming Abstractions
• Jha, Katz, Parashar, Rana, Weissman, “Critical

Perspectives on Large-Scale Distributed Applications and

Production Grids,” Proceedings of Grid 2009

• Question: What are the main objectives for developing,

deploying, and executing distributed applications?
• Interoperability: Ability to work across multiple distributed resources

• Distributed Scale-Out: The ability to utilize multiple distributed resources

concurrently

• Extensibility: Support new patterns/abstractions, different programming systems,

functionality & Infrastructure

• Adaptivity: Response to fluctuations in dynamic resource and availability of

dynamic data

• Simplicity: Accommodate above distributed concerns at different levels easily…

• Potential answer to IDEAS: Frameworks, including SAGA, the Simple

API for Grid Applications?
• Use Montage to explore

Daniel S. Katz

Text

SAGA: Job Submission
Role of Adaptors (middleware binding)

Daniel S. Katz

Application

Development Phase

Generation & Exec.

Planning Phase

Execution Phase

DAG-based Workflow Applications:

Extensibility Approach

Daniel S. Katz

digedag

• digedag - prototype implementation of a SAGA-

based workflow package, with:

• an API for programatically expressing workflows

• a parser for (abstract or concrete) workflow descriptions

• an (in-time workflow) planner

• a workflow enactor (using the SAGA engine)

• this will eventually be separated from digedag, but will continue

to use SAGA

• Can accept mDAG output, or Pegasus output

• Can move back and forth between abstract and

concrete DAG

Daniel S. Katz

SAGA-Montage Testing

• Tests run

• toy problem: m101 tutorial (0.2° x 0.2°)

• But useful for trying things – functionality

• digedag used for planning

• For this problem, takes about about 0.2 s – same as Pegasus

• Runs

• Local submission using fork

• Local submission using ssh/SAGA

• Local submission using Condor/SAGA

• Local submission using 2 of above 3 and 3 of above 3

• Queen Bee submission using ssh/SAGA

• EC2 submission using AWS/SAGA

• Remote submission to Queen Bee and EC2 using both ssh/SAGA and

AWS/SAGA

• Local/remote submission to local, Queen Bee, and EC2 using fork, ssh/SAGA,

and AWS/SAGA

Daniel S. Katz

Further Montage Cloud Work

• Goal: Develop distributed data-intensive scientific

applications to utilize a broad range of distributed systems,

without vendor lock-in, or disruption, yet with the flexibility

and performance that scientific applications demand

• Coordination of distributed data & computing

• Runtime (dynamic) scheduling (including networks), placement,

affinity

• Including use of information systems – BQP on TG, etc.

• Fault-tolerance

• Challenges

• What are the components? How are they coupled? How is

functionality expressed/exposed? How is coordination handled?

• Layering, ordering, encapsulations of components

• Tradeoff of costs and rewards

• Balance user and system utility (time to solution vs. system utilization)

Daniel S. Katz

Conclusions

• Static (parallel) apps don’t have much to gain from today’s

clouds

• Emerging “HPC as a Service”, and new private clouds such as

Magellan might change this

• Also research in removing VM overhead, such as pass-through

communication and I/O

• Recognize that the app may not want to change, the infrastructure

has to change to support the app

• Other apps can clearly gain from today’s clouds

• Using PaaS is simple, for the apps that can be re-written to do so

(DAG-based+)

• New apps can be the most flexible

• If they throw out old assumptions

• Use SAGA to make best use of clouds and grids together?

Daniel S. Katz

Conclusions (2)

• NIST definition:

• a computing capability that provides an abstraction

between the computing resource and its underlying

technical architecture (e.g., servers, storage,

networks), enabling convenient, on-demand network

access to a shared pool of configurable computing

resources that can be rapidly provisioned and released

with minimal management effort or service provider

interaction

• Applications are developed for specific underlying

architectures

• What is the abstract architecture for clouds?

Daniel S. Katz

Credits

• FDTD material:

• Allen Taflove, Northwestern, John Schneider, WSU, Tae-Woo Lee, LSU

• Montage

• Attila Bergou, Nathaniel Anagnostou, Bruce Berriman, John Good, Joseph

C. Jacob, Anastasia Laity, Thomas Prince, Roy Williams

• Grid Montage

• Ewa Deelman, Carl Kesselman, Gurmeet Singh, Mei-Hui Su

• DPA Theme

• e-Science Institute

• Shantenu Jha, Manish Parashar, Omer Rana, Jon Weissman

• SAGA

• SAGA Team – http://saga.cct.lsu.edu/

• SAGA Montage

• Andre Luckow, Andre Merzky, Katerina Stamou, Shantenu Jha

