(intel')Leapaheadm

Exploiting the Power of the I 1 I®
Compiler Suite

Dr. Mario Deilmann

[@SY Intel° Compiler and Languages Lab
weme Software Solutions Group

Agenda

e Compiler Overview
— Intel® C++ Compiler

* High level optimization
- IPO, PGO

e \Vectorization
—Loops and Co.

d Copyright® 2 o
3 *Inteland the In

- == =

Why does Intel make Compilers ?

 Performance, performance and
performance
— It all started in the early 90s by the need to

provide best SPEC numbers for Intel
processors-based systems

e Early Availability
-HW support & testing, enabling, eco-system
initializing
— Utilize SIMD registers through vectorization
Influence on SW industry

— Promote features like SSE, OpenMP

= “—é —== — - -

: e
Copyright ° 20 08, Intel Corporation.All
%] *Intel and the Intel logo are register
- _::-:in—- o = =4 -

Compilers Provided in the Intel
Compiler Package

* The Intel® IA32 Compiler
—Generating binaries for IA32 systems

* The Intel® Intel 64 Compiler
—Generating binaries for Intel 64-based or

compatible systems

* The Intel® Itanium® Compilers
—Generating binaries for Itanium-based systems

h - :.! =
Copyright ° 2008, Intel Corporation.All Tights Fesenyes
o *Intel and the Intellogo are regisSters g
I —— =~ - "

Supported Platforms

Product

Architecture

OS/platform

Intel® C++
Compiler

IA32/
EM64T

Windows*

Linux*

Mac OS* (starting with 9.1)

IA-64

Windows*

Linux*

Xscale™

Microsoft eMbedded Visual C++*

Platform Builder for Win CE .NET*

Intel® Fortran

Compiler

IA32/
EM64T

Windows*

Linux*

Mac OS* (starting with 9.1)

IA-64

Windows*

Linux*

Two Product Lines for
Two Kinds of Developers

Maximize parallel performance
C++ and Fortran on Windows*, Linux* and Mac OS* X

Compie Sample: Intel® C++ Compiler Professional Edition

Professional Edition

raditional 100lS, avallabl€ SINCE years

Maximize parallel productivity
C++ using Visual Studio on Windows

Sample: Intel® Parallel Composer

e | New, part of Intel® Parallel studio
Parallel 4

e ~=Composer

C++ and Fortran Compilers

e Professional Edition for Windows*, Linux* or
MacOS : Bundles Intel® Compiler with Libraries

— Intel® C++ Compiler or Intel® Fortran Compiler

— Intel® Math Kernel Library (C++ & Fortran)

— Intel® Integrated Performance Primitives Library (C++)
— Intel® Threading Building Blocks (C++)

e Intel® Parallel Composer as part of Intel® Parallel
Studio for Windows* only:

— Intel® C++ Compiler
- Intel® Integrated Performance Primitives Library (C++)
- Intel® Threading Building Blocks (C++)

: Copyright ® 2)8

s A
= .

¥ *Inteland the nte

Some Generic Features

Compatibility to standards (ANSI C, ISO C++, ANSI C99,
Fortran95, Fortran2003)

Compatibility to leading open-source tools (ICC vs. GCC,
IDB vs GBD, ICL vs CL, ...)

- Windows* compiler fully integrates into MS VS 05/08
Supports all instruction set extensions via vectorization
— Automatic and manual code dispatching
OpenMP* support and Automatic Parallelization
Sophisticated optimizations
— Profile-guided optimization
— Multi-file inter-procedural optimization
Detailed compilation report generation

4 Copyright* 200
g *Inteland the In

= .

Intel® Compilers 11.x

* Features:
— Multi-core processor support through Auto-parallelization
- OpenMP* 3.0

— Advanced optimization technology: (automatic) vectorization,
interprocedural Optimization, profile-guided Optimization

— Full compatibility with Windows*, Linux* and Mac OS* X
development environments

 What's New:
- New High-performance, parallel optimizer (HPO)
— Parallel execution of inter-procedural Optimization
— Optimization Reports for Advanced Loop Transformations
— Static Verifier — security, buffer overflow, OpenMP verification

— SSE4.2 Intel® Core™ i7 processor (Nehalem) new processor
support

— ANSI/ISO C++ standard support, support parts of C++0x
— Substantial Fortran 2003 support

Compatibility with Microsoft

Source and binary compatible
Full compatibility with .Net* Build Environment
Binary compatibility
Name Mangling and Calling Convention
Debug Format Compatibility
Mix and match object files or DLLs
Limitations
 No support of .pch file; instead use .pchi file
 No support for attributed programming, managed

d Copyright* 2008, Intel CorporationsAiltigh
73 *Intel and the Intellogo are registert

Compatibility with Linux (MacOSX)

Source and binary compatible

 Mixing and matching binary files created by g++,
including third-party libraries

 Generating C++ code compatible with gcc/g++
3.2 or higher (up to 4.4)

 Improved support for command-line options
offered in the GNU compilers

e Support of most GNU C and C++ language
extensions

Limitations

e Intel Fortran Compiler for Linux is not binary
compatible with GNU g77 or GNU gfortran
compiler

§ Copvright® 2008, ntel Corporation.AlltighisFeseive:
73 *Intel and the Intellogo are registert }

Compatibility with Linux (cont)

gcc/g++ language extensions

 We support most of the GNU gcc language
extensions (47 out of 56)

Limitations
 No support for:

Nested functions
Constructing function calls
Looser Rules for Escaped Newlines
Prototype and Old-Style Function Definitions
Using Vector Instructions Through Built-in Functions
Built-in Functions Specific to Particular Target Machines
Java* Exceptions
Deprecated Features
- Backward Compatibility

 We can successfully compile the Linux kernel
2.4.21 and 2.6.9 with Intel C++ Compiler on IA-
32, Intel® 64 and [IA-64, with a small wrapper
script and patches

: Copyright ® 2
g *Inteland the |

= .

A few General Switches

Functionality

Windows*

Linux* &
Mac OS*

Disable optimization

/0d

Optimize for speed (no code size increase), no SWP

/01

Optimize for speed (default), includes SSE & SWP
for IPF

/02

High-level optimizer (e.g. loop unroll)

/03

Aggressive optimizations (= -xHOST -03 -ipo -
static —prec-div-)

/fast

Create symbols for debugging

r4

Generate assembly files

/Fa

Optimization report generation

/Qopt-report

/opt-report

OpenMP 3.0 support

/Qopenmp

-openmp

Automatic parallelization for OpenMP threading

Copyright ® 2
*Intel and the |

ixe.

/Qparallel
. =M

-parallel

High-Level Optimizer (HLO)

« Overview

— Loop level optimizations
— loop unrolling, cache blocking, prefetching

— More aggressive dependency analysis

— Determines whether or not it is safe to reorder or
parallelize statements

— Scalar replacement

— The goal of scalar replacement is to reduce memory
references with register references.

e How to enable HLO
— (Linux*) -02,-03, (Windows*) /02,/03
e But loops must meet certain criteria ...

: Copyright ® 2
g *Inteland the Inte

Multi-pass Optimization -
Interprocedural Optimizations

e Interprocedural optimization works on the
entire program across procedures and file
boundaries

 Enabled optimizations:
— Procedure inlining (reduc. function call overhead)
— Procedure reordering

— Interprocedural dead code elimination, constant
propagation and procedure reordering

— Expected Winners
— Many small utility functions

—IPO can be quite expensive in terms of
compilation time and disk space!

e

: Copyrlght" mf, e .‘_1., orat Allri
d *Intel and the Intellogo are registert

= =

Profile Guided Optimization !

- Up to know we have only done a static analysis of
the program code , PGO is a
The execution- t|me characteristics are recorded
and this information is fed into the other
optimization phases.

e Static analysis leaves many questions open like:
- How oftenis x > vy
— What is the size of count
— Which code is touched how often

if(x >) for(i = 0:i< count ;++i)

else
do_that();

Multi-pass Optimization - Profile
Guided Optimizations (PGO)

e Uses run-time profiling to guide
optimization

e Benefits code on IA-32, Intel 64 and
Itanium™ architectures
— More accurate branch prediction

— Basic block movement to improve instruction cache
behavior

— Better decision of functions to inline (help IPO)
— Can optimize function ordering
- Switch-statement optimization

— Better vectorization decisions

- R o
Copyright ° 2008, Intel
re *IntEI and th-e L ;'_‘:'L _- . 3

Agenda

e Compiler Overview
— Intel® C++ Compiler

* High level optimization
- IPO, PGO

e \Vectorization
—Loops and Co.

d Copyright® 2 o
3 *Inteland the In

- == =

Vectorization

e For vectorization we add eight 128-bit
registers known as xvivo-xmmz For the 64-bit
extensions additional eight registers xmws-
xvMisare added

e Operations on this registers are an addition

to the X86 instruction set

* The Intel® Compiler can automatically
generate these instructions called SSEx
(Streaming SIMD Extensions)

: Copyright ® 2 el
re *Intelér]dth'je'_,'_ 0goarereg

Evolution of SSE

70 instr 144 instr 13 instr 32 instr 47 instr 8 instr
Single- Double- Complex Decode || Video String/XML

Precision recision Data processing

\V/ ectors Graphics
SCLOrS Sl POP-Count

Streaming || 8/16/32 blocks

_ : CRC
operations 64/128-bit Advanced

vector vector instr
integer

Will be continued by
® Intel® AES (Cryptographie, Westmere Architecture 2009)

® Intel® AVX (256 bit SSE, Sandy Bridge Architecture, 2010)

Copyright ® 2 :
*Intel and the |

T

Compiler Based Vectorization

/Qx< codel >[,< code2 >,...] %< codel > ...

— generate specialized code to run exclusively on processors
indicated by <code>

SSE2 Intel® Pentium 4 and compatible Intel processors

SSE3 Intel® Core™ processor family with Streaming SIMD
Extensions 3

SSSE3 Intel® Core™?2 processor family with SSSE3

SSE4.1 Intel® processors supporting SSE4 Vectorizing
Compiler and Media Accelerator instructions

SSE4.2 Can generate Intel® SSE4 Efficient Accelerated
String and Text Processing instructions supported
by Intel® Core™ i7 processors

: Copyright ® 2
 *Intel and thE

SIMD - SSE, SSE2, SSE3 Support

16x bytes

8x 16-hit shorts

4x 32-bit integers

2X 64-bit integers

1x 128-bit(!) integer

| Copyright ® 2 ol Carnaration. Al
d *Inteland the Intellogo are regists

Using SSE3 - How to convert ?

for (i=0;i<=MAX;i++)
c[i]=a[i]+Db[i];

e.g. 3 X 32-bit unused integers
e

All] not used not used
+ + +

B[1] not used not used

C[1] not used not used not used

Copyright ® 2008, In
*Intel and the.

...into This...

e Processor switch is vectorizing loops for fp and scalar ops.

e Usage: Linux* -xSSE3 Windows* -QxSSE3

for (i=0;i<=MAX;i++)
c[i]=a[i]+Db[i];

d Copyright® 2
3 *Inteland ther

- == =

Vectorization

Problems and what you do ...

Copyright 200
*Intel and the In

T

Why Loops Don’t Vectorize

» Independence

— Loop Iterations generally must be independent
e Some relevant qualifiers:

— Some dependent loops can be vectorized.

— Most function calls cannot be vectorized.

— Some conditional branches prevent vectorization.
- Loops must be countable.

— Outer loop of nest cannot be vectorized.

- Mixed data types cannot be vectorized.

: Copyright ® 2
 *Intel and thE

Why Loops Don’t Vectorize

- “Existence of vector dependence”

- “Vectorization possible but seems inefficient"
— “Operator unsuited for vectorization”
— “"Nonunit stride used”

- "Mixed Data Types”

— “Subscript too complex”

— “"Condition too Complex”

— “"Condition may protect exception”

- “Low trip count”

- “*Unsupported Loop Structure”

- “"Not Inner Loop”

- “Contains unvectorizable statement at line XX"

Agenda

e Compiler Overview
— Intel® C++ Compiler

* High level optimization
- IPO, PGO

e Vectorization
—Loops and Co.

e Compiler Reports
— Effective use

: Copyright ® 2
 *Intel and thE

Optimization Report Methodology

 During “Analyzing the Data” phase of an
Optimization Methodology

— Generate the Report(s)
— Filter The Data in the reports

- "Hot Spot”

— Relevant Optimization Report
— Analyze the decisions made by the compiler

 Add assertions using Application knowledge to
help the compiler

- Modify Compiler Switch Settings (assertion flags)
— Modify Source (pragma’s or modify source)

— File Optimization Feature Request to Intel Compiler Team
_ S———

: Copyright ® 2 -
 *Intel and thE

= .

Filter The Data in the Reports

 Choose only specific phases relevant to
what you are looking for
-opt-report-phase [phase]
Enables the report for only the selected phases
hlo, ipo_inl, ecg_swp

 Which loops vectorized/parallelized ?

-vec-report[0..3..5]
-par-report[0..3]

* \Views the data for a particular function

-opt-report-routine functionname

: Copyright ® 2 el
re *Intelér]dth'je'_,'_ 0goarereg

Why Didn’t My Loop Vectorize?

e Use Report switch.

e Syntax: - Qvec-report n

Sets diagnostic level dumped to stdout

Nn=0: No diagnostic information

n=1: (Default) Loops successfully vectorized

n=_2: Loops not vectorized - and the reason why not
N=3: Adds dependency Information

: Copyright ® 2 -
 *Intel and thE

= . L N

Example: Vectorization

> C:\home\src\classes\compiler\MatVector>icl /QxW /Qvec-report3 Driver.c Multiply.c
/FeMatVector.exe

Driver.c
Driver.c(64)

Driver.c(74)
Driver.c(39)
Driver.c(28)

Driver.c(30)
Driver.c(12)
Driver.c(14)

Driver.c(18)
Driver.c(19)
Multiply.c

> (col.

> (col.
> (col.
> (col.

> (col.
> (col.
> (col.

> (col.
> (col.

2) remark: loop was not vectorized:
at line 65.

2) remark:
2) remark:
10) remark: loop was not vectorized:

3) remark:
2) remark: loop was not vectorized:
14) remark: loop was not vectorized:

3) remark: loop was not vectorized:
4) remark:

Multiply.c(7) : (col. 2) remark: loop was not vectorized:
Multiply.c(9) : (col. 3) remark: loop was not vectorized:
-out:MatVector.exe

Driver.obj
Multiply.obj

Copyright ° 2008
g *Inteland the

Products

unsupported loop structure

Agenda for today

10.00 - 11.30 Intel® Compiler

11.00 - 11.30 Intel® Threading Tools
11.30 - 12.00 Coffee Break

12.00 - 12.45 Intel® Vtune & Cluster Tools

Presenter: Mario Deilmann
eMail: mario.deilmann@intel.com

B

Checking Correctness
and Performance of

..

(el

Software
Products

Threading Development Cycle

Analysis
—Intel® VTune™ Performance Analyzer
Design (Introduce Threads)

—Intel® Performance libraries: IPP and MKL
—OpenMP* (Intel® Compiler)
—Intel® Threading Building Blocks

Debug for correctness

—Intel® Thread Checker
—Intel® Debugger

Tune for performance

—Intel® Thread Profiler
—Intel® VTune™ Performance Analyzer

- N

Copyright ® 20(
*Intel and the In

=
- T

{

Example: Not Quite Right

#include <stdio.h>

const long N = 100000;

long Primes[N], PrimesCount = 0;
main()

printf("Determining primes from 1-%d \n", N);
Primes[PrimesCount++] = 2; // special case

#pragma omp parallel for

for (long number = 3; number <= N; number += 2
{
long factor = 3;
while (number % factor) factor += 2,
if (factor == number)
{
Primes[PrimesCount] = number;
PrimesCount++;

}
}

printf("Found %d primes\n", PrimesCount);

¢ |Command Prompt

C:xPrimes~Release>Primes.exe

Determiming primes from 1-1HBHAEA
Foun l_'lpr-imes

C:»Primez“Release>Primes.exe
Determining primes from 1-1HBHEA
Found(958%) primes

C:»Primez“Release>Primes.exe
Determining primes from 1-1HBHAEA
Found(9578) primes

C:»Primez“Release>Primes.exe
Determining primes from 1-1HBHEA
Found(9588) primes

C:»Primez“Release>Primes.exe
Determining primes from 1-1HBHEA
Found(9571) primes

C:xPrimez“HeleaseX_

Intel® Thread Checker
 Debugging tool for threaded software

e Finds threac
locks) in Winc

Intel® Threac
software

ing bugs (data races, dead
ows*, POSIX*, OpenMP*, and
ing Building Blocks threaded

e API for user-defined synchronization

primitives

e Locates bugs quickly that can take days to
find using traditional methods and tools

—Isolates problems, not the symptoms

—Bug does not have to occur to find it!

X = -—_..:;--".' = STt
Copyright 2008, Intel Corpofs AR EHGRESRSRISNETES

73 *Intel and the Intellogo are registert r
== .:a-—- S = » R 3

Thread Checker: Analysis

Dynamic as software runs
—Data (workload) -driven execution

eIncludes monitoring of:
nread and Sync APIs used

hread execution order
— Scheduler impacts results

—Memory accesses between threads

Multithreading introduces new
problems

* New class of problems are introduced due to the
interaction between threads which are
complicated, non-deterministic and therefore
hard to find !

» Correctness problems (data races)
* Performance problems (contention)
e Runtime problems

- R o
Copyright ° 2008, Intel
re *IntEI and th-e L ;'_‘:'L _- . 3

Race Conditions

e Execution order is assumed but cannot be
guaranteed

—Concurrent access of same variable by multiple
threads

e Most common error in multithreaded
programs

* May not be apparent at all times

: Copyright ® 2 el
re *Intelér]dth'je'_,'_ 0goarereg

Prominent problem: Race
Condition é

e Suppose Global Variables
-A=1, B=2
 End Result different if:

—T1 runs before T2
—T2 runs before T1

 Execution order is not guaranteed unless
synchronization methods are used.

: Copyright ® 2 el
re *Intelér]dth'je'_,'_ 0goarereg

Deadlock Example é

Threadl

Waiting lockB to be released

Thread2

Waiting lockA to be released

Funcl()
{

Lock(A)
Lock(B)

unlock(B);
unlock(A);

globalX++;

globalY++;

Func2()
{
Lock(B)
globalY++;
Lock(A)
globalX++;
unlock(A);
unlock(B);

Deadlock - Both threads are now waiting for each other eternally

To fix;

Both functions must acquire and release
locks in the same order

intel' Copyright ® 2
Software *Intel and thE

Intel® Thread Checker Summary

 Threading errors are easy to introduce

 Debugging these errors by traditional
techniques is hard

 Intel® Thread Checker catches these
errors
—Errors do not have to occur to be detected
— Greatly reduces debugging time
—Improves robustness of the application

) == ==
Copyright ° 2008, Intel CorporationsAlLti
%] *Intel and the Intel logo are register
- _::-:in—- o = =4 -

Thread Checker: Before You Start

eInstrumentation: background

— Adds calls to library to record information
— Thread and Sync APIs
— Memory accesses

— Increases execution time and size

Use small data sets (workloads)
— Execution time and space is expanded
— Multiple runs over different paths yield best results

Intel® Thread Checker

Data Flow of Binary Instrumentation

Intel ® Thread Checker

Binary
Instrumentation

Primes.exe
(Instrumented)

Primes.exe

Runtime
Data
Collector

threadchecker.thr
(results)

Win32* threads, TBB, POSIX* threads, OpenMP*

+DLLs (Instrumented)

Graphical User Interface (Windows)

Intel® Thread Checker - [Intel® Thread Checker - Activity: 03: 21 PM, 2006 Jun 01 (TC: primes.exe]]

.Eile Edit Wiew Activiey Configure Window Help

HEY =& (113 2= 3E > |% P |6T%r |]Tc primes.exe (03:21 PM, 2008 Jun 01) | B

Shart Description / ShortDescripion 2]

D | Seventy | Dezcription

=] Group 2 'wite -» Read data-race [Diagnostics: 2; Filtered: 0]

Memary read at "Primes.cpp':44 conflicts with a prior memory write at *'Primez.cpp':44 [flow dependence)

+ Group 3: Wwiite - Write data-race [DNagnostics: 2; Filkered: 0]

Diagnostic groups

|'v | Stack: iunsigned long FindPrimes{void *] "Primes.cpp': 43

.4 e

Source

Ox105E for [(long number = start! mawber < end; nunber += stride)
i

Ox1074 long factor = 3; o1 2 3 465
Ox107E while | (numker % factor) !'= 0) factor += Z; Mumber of
Oxi1091 if | factor == number | OCCUIEHCES

i

Primes[PrimeCount] = nuwmber: B Unclassified
44 FrimeCount++: Remark

45 0 Information
O0x10E6 46 i Caution
Ox10E8& 47 return 0; W arning

Ox10EA 45 I Error
EP Filkered
£

Ennte:-tt] DefinitionJ TstAccess 2nd Access |Stac:k Traces]

Example: Much Better Now ...

#include <stdio.h>

const long N = 100000;

long Primes[N], PrimesCount = 0;

main() {
printf("Determining primes from 1-%d \n", N);
Primes[PrimesCount++] = 2; // special case

#pragma omp parallel for
for (long number = 3; number <= N; number += 2){

long factor = 3;
while (number % factor) factor += 2;
if (factor == number)

Primes[PrimesCount] = number;
PrimesCount++;

¢ |Command Prompt

C:xPrimes~Release Primes
Determifsng primes from 1-1H8H8H
Foun dpr-imes
E:HPrlmEahﬂeleaaE}Prlmes

Deter primesz from 1-18HHHAH
Foun dwln'-lrrm“
C:xPrimes~Release Primes
Determifdng primes from 1-1HHBAHA
Foun dwln'-imes
C:sPrimesz~Release>Primes
Determirming primes from 1-1HHBHA
Foun dwln'-imes
C:xPrimes~Release Primes

Determimring primes from 1-1HHBHA
Foun dwln'-imes

C:~»Primeszs“Release__

Source Code Viewer

BEEB|(2% (465

tid = *{int *)plrg;
start = bounds[0] [£id] ;
end = bounds=s[1] [tid] ;

for | i=start; i<end; i++ | {
for| j=0; j<i-1; j++ | |
distx = pow((£[0]1[3] - ©[0][1i]1]).
disty = pow{ (r[1][3] — r[1][i]},
i B Tk U de i B U e B RS o e e R S]
dist = sgrt| distx + disty 4+ distcz |;
pot += 1.0 / dist:

maiti
"potential_w32.c' 42
potential w32 exe

}
return 0O;
11

il

RERE| 3% 4V B0

Source

tid = *(int ¥)plrg;
start = bounds[0] [tid] ;
end = hounds[1] [tid] ;

for (| i=start; i<end; i++ | {
for| j=0; j<i-1; j++ |
distx = pow((r[0][3] - r[0][i]).
disty = pow((r[1][3] — r[1][i]]).
= poml{ (£[21[3] = rf21[11]),
dist = sgrt(distx + disty + distz):
PEE S EalE A Eieny

ain
"potential_w32 c':42
potential_w3Z exe

¥
return 0O;

a7
HEl

Diagnastics | Stack Traces Saurce View |

Performance Profile: Recap

Threads

Possible causes for this scalability profile:
1. Insufficient parallel work
2. Memory bandwidth limitations
3. Synchronization overhead
4. Load imbalance

4 Copyright° 200
g *Inteland the |

= .

Thread Profiler Phases

VTune™ Analyzer

+DLLs/.so instrumented

Runtime
data
collector

Binary Instrumentation

 Lower run-time overhead as only select
events are monitored

e Usually performance within 2X of original
performance for applications with
reasonable synchronization

e Events recorded

— Create Thread, Thread Entry, Wait for Synch. Object or Event, Acquire
Synch. Object or Event, Release or Signal synch. Object or Event, Wait
for external event, Receive external event, Thread Exit

| Copyright ® 2 ol Carnaration. Al
d *Inteland the Intellogo are regists

System APIs Monitored

—Thread and Process Control APIs
- Create, Terminate, Suspend, Resume, Exit
—Synchronization APIs

— Mutexes, Critical Sections, Locks, Semaphores,
Thread Pools, Timers, Messages Events

—Blocking APIs
— Sleeping, Timeouts

—1/0: Files, Pipes, Ports, Messages, Network,
Sockets

— User I/O: Standard, GUI, Dialog Boxes

Profile Pane - Concurrency Level View

Frofife Filter | | Groupeeg: T Congamepcy Lewvel

% | eEl e ok BLEE 0 QS o
- ' 3 Thread State

24 | : dicive
Overhead = 4,639 [12.03%) B

22 | |Tatal Ciical Path Time = 25,1474 Let’s look at the % :VFFI
A | . Thread View M Ciitical Path Data

. atal !ritin:al Path TimI ~65% of the time B

12 S Two threads ran in parallel
: ~33% of the time

Fully Utilized fmpact = 12 474 . E—— .
Total Critical Path Tirme = 12,5243 [32.49%)| MR ey
[rider Utilized & Impact
Fully Utiized '
[] Fully Utiized & Blocking.
Over Utiized Impact = 0526321 [1.37%) [] Fully Utilized & Impact
Total Critical Path Time = 0551884 [1.43%) [Ower Utiized
i [] Bver Utilzed & Blacking
[Qver Utilized & Impact

D:abarhsad

e
=
i
a
t
o
£
=

Finelire

Prafile Yiew | Summary 1

Profile Pane — Thread View

3% ol bl bbbkl QAR @

¥ Thread State

Let's look at the
Object View ftical Path Data

: Ekiencs
fetime ot o
[Ha Thiead Active
the thread [Josial
[Serisl & Blocking
[Setal & Impact

L]

Time [seconds]

Active time of
the thread

ully Ltfized & Blocking.
[Fulls Utlized & fmpact.
E[é.@yﬁrfl{ﬁ]iae&
[] OvverUtlized & Blacking.

= | Thread = PiT hreadFunc [5]
< 105 1d = Oxeld

Creator =1

Lifetime = 555263

Create loc: chelasstles\multi-coretthread profilersnumenical integrationbnumencalinbegration.cpp 171

Fimelns

Timeline Pane

Priotite= Filter Graupng: 11 Dbt

Timehne

«wﬂalﬁ%wmgﬁm

13 BEEE : B N ¥ Thiead State.
2 5 ; : : . B = -.-’.'-.?:,twe el

7 Spin
0 wait
B Fause/ignoe

Critical Path Data
¥ Concurency
Sunc Object: Criical Sechion 12 _r_-"_E'e;Ha{!'ii:lr

From Thread FiThreadFune [5] at ‘Mo Thread
chclazsfilessmuli-coreithread profilernumerical integrationsrurnenicalintegration RR oo e

to Thiread PiThteadFune [3] at 'QH#Q{-‘D_EﬂiEEd
cAclassfiles\multi-coredthread profilersnumencal integrationhnumencalintegration. :pp 75 |__Ed&i'ﬁfi'l'izéd

| Qe Utilized
Overhead:

) Critical Path Target
~ Tranzitions

Tiansition
; Trarisition w/o Source
i W~ FarkdJoin
f ¥ 1 UserEvert

Source View

%]EHTTans]hclﬁﬁaum
Ef‘ rariﬂnun |g@m

‘Houree ,[ﬁ]

i

Af 0 Bince globalD3wn iz being updated, the
¢ has to he protected.

: i

DxlDAB : EnterCriticallection(&globalCs) ; [
: globalD3um = globalD3um + £idx)
LeaveCriticaliection(&globalcs)

an uninztrumented
madule an the stack. : recurn myThreadNum ;@ // thread exit code

Y A PiThresdFunc

= (1 - 0.5) ¥ globalDInterwval;

Fince globallSum iz being updated, the :
has to he protected.

Dx10LE: 7 Entercriticaliectionisglolalcs)
i globalD3um = globalD3wn + £idx)
LegveCriticaliection(&globalCs) ;

itlbscoret rread profile §

an uninstrumented
module on the stack.

return myThreadNur : //F thread exit code

Common Performance Issues

e Load balance
—Improper distribution of parallel work

* Synchronization

— Excessive use of global data, contention for the
same synchronization object

e Parallel Overhead
—Due to thread creation, scheduling..

 Granularity
—No sufficient parallel work

: Copyright ® 2 el
re *Intelér]dth'je'_,'_ 0goarereg

Load Imbalance

 Unequal work loads lead to idle threads
and wasted time

Thread O |:| Busy

Thread 1

Thread 2

Thread 3

Q'ltir Copyright ® 2_0'_0';&
o *Intel and thg'_!gi_

Synchronization

e By definition, synchronization serializes execution
* Lock contention means more idle time for threads

Thread O I

= Busy
Cdldle
Thread 2 [] I N Crltl Cal

Thread 1

Thread 3

Copyright °
*Intel and the |

Synchronization Fixes

e Eliminate synchronization
— Expensive but necessary “evil”

—Use storage local to threads

— Use local variable for partial results, update global
after local computations

— Allocate space on thread stack (alloca)
— Use thread-local storage API (TIsAlloc)

—Use atomic updates whenever possible

— Some global data updates can use atomic
operations (Interlocked API family)

: Copyright ® 2 ol Carnaration. Al
d *Inteland the Intellogo are regists

Synchronization Fixes

* Use best synchronization object for job

—Critical Section
— Local object
— Available to threads within the same process
- Lower overhead (~8X faster than mutex)

- Mutex
— Kernel object
— Accessible to threads within different processes
— Deadlock safety (can only be released by owner)

 Other objects are available

: Copyright ® 2 el
re *Intelér]dth'je'_,'_ 0goarereg

What's Been Covered

e Identifying performance issues can be time
consuming without tools

* Tools are required to understand and to
optimize parallel efficiency and hardware
utilization

 Thread Profiler helps you understand your

applications thread activity, system
utilization, and scaling performance

- R o
Copyright ° 2008, Intel
re *IntEI and th-e L ;'_‘:'L _- . 3

www.intel.com/software/products

