
Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Parallel Programming Models

Dr. Mario Deilmann

Intel Compiler and Languages Lab

Our Vision: Making models survive
future architectures

Single Source – portable across systems and into the future

CPU
CPU w/Accelerator

SSE 4 LRBni

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Hybrid Processors

AVX

ManyCore Processors

Today’s Parallelism

• There are lots of programming options
from Intel:

– Old recommendations (e.g. OpenMP)

– Newer recommendations (e.g. TBB, Ct)

– New acquisitions (i.e. Cilk, RapidMind)

– Competitive offerings (e.g. OpenCL, CUDA)

TBB
Ct
Cilk
RapidMind
OpenMP
MPI
OpenCL

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• An initiative (or a few initiatives) to
clarify the programming options for our
customers

OpenCL
Xntask
CnC

#include <stdio.h>
#include <pthread.h>
const int num_threads = 4 ;

void* thread_func(void* arg) {
do_work();
return NULL;

}

POSIX* pthreads*: Example

Parallel processing

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. 4

Thre
adin

g
met
hodo

}
main() {

pthread_t threads[num_threads];
for(int i = 0; i < num_threads; i++)

pthread_create (&threads[i], NULL, thread_func, NULL);

for(int j = 0; j < num_threads; j++)
pthread_join (threads[j], NULL);

}

#pragma omp parallel for private(pixelX,pixelY)

OpenMP* Threads: Implicit

Create
Threads

Split loop iterations
among threads

Make local variables
for each thread

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. 5

Thre
adin

g
met
hodo

for (pixelX = 0; pixelX < imageWidth; pixelX++)
{

for (pixelY = 0; pixelY < imageHeight; pixelY++)
{

newImage[pixelX,pixelY] =
ProcessPixel(pixelX, pixelY, image);

}
}

General MPI Program Structure

#include "#include "#include "#include "mpi.hmpi.hmpi.hmpi.h""""

intintintint main(main(main(main(argc,argvargc,argvargc,argvargc,argv){){){){

rcrcrcrc = = = = MPI_InitMPI_InitMPI_InitMPI_Init(&(&(&(&argc,&argvargc,&argvargc,&argvargc,&argv););););

if (if (if (if (rcrcrcrc != MPI_SUCCESS) {!= MPI_SUCCESS) {!= MPI_SUCCESS) {!= MPI_SUCCESS) {

printfprintfprintfprintf ("Error starting MPI program. ("Error starting MPI program. ("Error starting MPI program. ("Error starting MPI program. \\\\n");n");n");n");

MPI_AbortMPI_AbortMPI_AbortMPI_Abort(MPI_COMM_WORLD, (MPI_COMM_WORLD, (MPI_COMM_WORLD, (MPI_COMM_WORLD, rcrcrcrc););););

}}}}

C/C++

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

2010-
03-17
6

}}}}

MPI_Comm_sizeMPI_Comm_sizeMPI_Comm_sizeMPI_Comm_size((((MPI_COMM_WORLD,&numtasksMPI_COMM_WORLD,&numtasksMPI_COMM_WORLD,&numtasksMPI_COMM_WORLD,&numtasks););););

MPI_Comm_rankMPI_Comm_rankMPI_Comm_rankMPI_Comm_rank((((MPI_COMM_WORLD,&rankMPI_COMM_WORLD,&rankMPI_COMM_WORLD,&rankMPI_COMM_WORLD,&rank););););

printfprintfprintfprintf ("Number of tasks= %d My ("Number of tasks= %d My ("Number of tasks= %d My ("Number of tasks= %d My
rank= %drank= %drank= %drank= %d\\\\n",ntasks,rankn",ntasks,rankn",ntasks,rankn",ntasks,rank););););

/******* do some work *******//******* do some work *******//******* do some work *******//******* do some work *******/

MPI_FinalizeMPI_FinalizeMPI_FinalizeMPI_Finalize();();();();

}}}}

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

What about the other approaches ?

What about Cilk++ ?

• Cilk++ offers a compiler keyword alternative to
TBB

• Every Cilk program preserves the serial semantic

• Cilk provides performance guarantees since it is
based on theoretically efficient scheduler

• There are three additional keywords: cilk, spawn

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• There are three additional keywords: cilk, spawn
and sync

• Cilk uses parallel stacks (cactus stacks) in contrast
to linear stacks (TBB)

• Beta starts in ~ Q2 2010

Cilk - The main principle

• The programmer should be responsible
for exposing the parallelism:

– identifying elements that can safely be executed in
parallel

• It should then be left to the run-time environment,
particularly the scheduler, to decide during

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

particularly the scheduler, to decide during
execution how to actually divide the work between
processors.

– It is because these responsibilities are separated that
a Cilk program can run without rewriting on any
number of processors, including one.

Fibonacci – recall the functionality

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

F
18

F
17

F
16

F
15

F
14

F
13

F
12

F
11

F
10

F
9

F
8

F
7

F
6

F
5

F
4

F
3

F
2

F
1

F
0

2584159798761037723314489553421138532110

nth Fibonacci number – C

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n - 2);

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

y = fib(n - 2);
return (x+y);

}
}

Fibonacci – Cilk code

cilk int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n - 2);

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

y = spawn fib(n - 2);
sync;
return (x+y);

}
}

cilk int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;

Identifies a function as a
Cilk procedure, capable of
being spawned in parallel.

The named child Cilk

Basic Cilk Keywords

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

sync;
return (x+y);

}
}

The named child Cilk
procedure can execute in
parallel with the parent
caller.

Control cannot pass this point until all spawned
children have returned. The sync done implicitly
on every return .

Why Do We Need One More?

• So many cores, so hard to harvest parallelism

– Parallel programming is too hard for the masses of developers �

need to emphasize ease of use

– Data races are too easy to create, way too hard to debug �

preclude races through safety

– Target-specific specialization is required to get performance, but
makes code very difficult to maintain and port � raise to a natural

level of abstraction and enable forward scaling across architectures

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

level of abstraction and enable forward scaling across architectures
and ISAs

– Uniform model for harvesting SIMD and thread-level parallelism in
either scalar kernels or array syntax � compiler + runtime

– ValArray too limited � universal set of operators across (even

irregular) data structures

What about Threading Building Blocks ?

• It’s a C++ library and integrates nicely with the
STL

• TBB provides advanced C++ abstraction
concepts

• Particularly suited when parallelism is hidden in
generic C++ structures like containers &
iterators

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

iterators

• You specify task patterns instead of threads

• A task scheduler does the mapping to the
threads

• Targets threading for performance (not
usability)

Intel® Threading Building Blocks

Concurrent Containers
concurrent_hash_map
concurrent_queue
concurrent_vector

Concurrent Containers
concurrent_hash_map
concurrent_queue
concurrent_vector

Concurrent Containers
concurrent_hash_map
concurrent_queue
concurrent_vector

Generic Parallel Algorithms
parallel_for
parallel_reduce
parallel_do (new)
pipeline
parallel_sort
parallel_scan

Task scheduler

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Miscellaneous
tick_count

Task scheduler

Synchronization Primitives
atomic operations
scoped locks

Memory Allocation
tbb_allocator (new), cache_aligned_allocator, scalable_allocator

Miscellaneous
tick_count
tbb_thread

… and OpenCL

OpenCl is a portable intermediate low-level language layer for a
wide variety of different Hardware (FPA, GPU, Cell, CPU, …)

• Intel is part of the OpenCL consortium

• Intel provided input for the specification

• Plans to have some OpenCL support out next year

• OpenCl is already available on Snow Leopard

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

My take on OpenCl

- Data parallel meets Task parallel on a very low abstraction level

– A good target language for API developers like Ct/RapidMind

– Programmers should use higher levels of abstraction such as
Ct/RapidMind, TBB, Cilk++ or OpenMP if at all possible

Performance versus effort

C
od

e
P

er
fo

rm
an

ce

MPITheoretical speedup limited by number of CPU’s per cluster

Cluster
OpenMP

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. 18

Thre
adin

g
met
hodo

Development effort

C
od

e
P

er
fo

rm
an

ce

OpenMP
TBB
Cilk

Serial optimization

Theoretical speedup limited by Core

Threads

Code Restructuring

OpenMP

Theoretical speedup limited by number of Core’s per CPU

BUT - Today’s On-going Realities

– Programming parallel apps is ~100x less productive than

sequential

– Non-deterministic programming errors (race conditions, …)

– Performance tuning is extremely complicated

– Strong interest by ISVs for a parallel programming model

which is:

– Abstract: Avoid dealing with OS and HW details

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

– Abstract: Avoid dealing with OS and HW details

– Simple: Deterministic, eliminate threading problems

– Fast & Scalable: Achievable through simpler

programming API

– Portable: Desire the flexibility to target various HW

platforms (CPU, LRB, GPU, Cell and a Mix)

Where does Ct fit?

“Ct Technology: a new perspective on data-
parallel programming”

What’s new and different?

•Why do we need one more programming model?

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

•Why do we need one more programming model?

•Where does Ct fit within Intel other tools?

•Where does Ct fit within the rest of the industry?

Forward Scaling with Ct

Ct

Object

Ct

Object

• Compile once, generating
optimized, native IA code

•Dynamically reoptimize for:

– More cores

– More cache

– More bandwidth

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Ct forward scales software with Moore’s law for Throughput and
Visual Computing

– More bandwidth

– More instruction set
enhancements

AVX, LRB,

…

Design Constraints

Target language: C++

•C++ will continue to be the dominant languages for
high performance for the next 5+ years

…and we mean standard C++!

• Custom syntactic extensions face huge barriers to

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• Custom syntactic extensions face huge barriers to
adoption

• It is possible to design a desirable semantics
through an API-like interface with some Macro
magic

Design Constraints

Target language: C++

•C++ will continue to be the dominant languages for
high performance for the next 5+ years

…and we mean standard C++!

• Custom syntactic extensions face huge barriers to

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• Custom syntactic extensions face huge barriers to
adoption

• It is possible to design a desirable semantics
through an API-like interface with some Macro
magic

Ct’s Parallel Collections

Regular Vecs Irregular Vecs

Vec

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Vec3D

VecIndexed

VecNested

Vec2D

Vec<Tuple<…>>

& growing…

Priorities: VecSparse, Vec2DSparse, VecND

Ct Semantics

The basic type in Ct is a polymorphic collection called a
Vec

–Vecs are managed by the Ct runtime

–Vecs are single-assignment vectors

–Vecs are flat, multidimensional, sparse, or nested

–Vec values are exclusively created & manipulated through Ct
API

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

API

Declared Vecs are simply references to immutable values
Vec<F64>DoubleVec; // DoubleVec can refer to any vector of doubles
…
DoubleVec = Src1 + Src2;
DoubleVec = Src3 * Src4;

Assigning a value to DoubleVec doesn’t modify the value

representing the result of the add, it simply refers to a new
value.

Segregated C/C++ and Ct Spaces

C/C++ space Ct space

copyin
C(++)

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

copyout

Ct code

Ct is garbage collected; practically, a small number of
Vecs are uncollected by compiler (ref counting)

Apply Functions: Black Scholes for
Options Pricing

float s[N], x[N], r[N], v[N], t[N];
float result[N];

_ct{
Vec<F32> S(s, N), X(x, N), R(r, N), V(v, N), T(t, N);

Vec<F32> d1 = S / ln(X);
d1 += (R + V * V * 0.5f) * T;
d1 /= sqrt(T);
Vec<F32> d2 = d1 – sqrt(T);

Vec<F32> tmp = X * exp(R * T) *
(1.0f - CND(d2)) + (- S) * (1.0f - CND(d1));

Vec<F32> BlackScholes(Vec<F32> S, Vec<F32> X,
Vec<F32> R, Vec<F32> V, Vec<F32> T)

{

Vec<F32> d1 = S / ln(X);
d1 += (R + V * V * 0.5f) * T;
d1 /= sqrt(T);
Vec<F32> d2 = d1 – sqrt(T);

Vec<F32> tmp = X * exp(R * T) *
(1.0f - CND(d2)) + (-S) * (1.0f - CND(d1));

return tmp;

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

(1.0f - CND(d2)) + (- S) * (1.0f - CND(d1));

copyOut(tmp, result, N * Sizeof(float));
}_endCt

return tmp;
}

float s[N], x[N], r[N], v[N], t[N];
float result[N];

_ct
Vec<F32> S(s, N), X(x, N), R(r, N), V(v, N), T(t, N);

tmp = call(BlackScholes)(S, X, R, V, T);

tmo.copyOut(result, N * Sizeof(float));
}_endCt

Red color shows the
differences between
“normal” and function Ct
code

ROI Crossover Graph

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. 28

Key Features and Benefits - Productivity

• Integrates with existing IDEs, tools, and compilers: no new
compiler needed

• Incremental: allows selective and targeted modification of
existing code bases

• Generalized data parallel model: widely applicable to many
types of computations

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

types of computations

• Safe by default: deterministic semantics avoid race conditions
and deadlock by construction

• Easy to learn: serially consistent semantics and simple interface
leverage existing skills

Key Features and Benefits - Portability

• High-level: avoids dependencies on particular hardware
mechanisms or architectures

• ISA extension independent: common binary can exploit
different ISA extensions transparently

• Hardware independent: Allows choice of deployment hardware
today: including scaling to many cores

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

today: including scaling to many cores

• Scaling: Allows migration and forward-scaling: will support AVX,
Larrabee and beyond

Language Vehicle for General Purpose Parallel
Programming

Ct Api
- Nested Data Parallelism
- Deterministic Task Parallelism

Fine grained concurrency and synchFine grained concurrency and synchFine grained concurrency and synchFine grained concurrency and synch

Deterministic parallel programming

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Dynamic (JIT) compilationDynamic (JIT) compilationDynamic (JIT) compilationDynamic (JIT) compilation

High-performance memory management

ForwardForwardForwardForward----scaling binaries for SSEx, LRBNIscaling binaries for SSEx, LRBNIscaling binaries for SSEx, LRBNIscaling binaries for SSEx, LRBNI

Parallel application library development

Performance tools for Future Architectures

What Does the Product Based on Intel
Ct Technology Look Like?

• Core API

– Flexible, forward scaling data parallelism in C++

• Application Libraries

– Linear Algebra, FFT, Random Number Generation
– Powered by Intel® Math Kernel Library (Intel® MKL)!

• Samples

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

– Medical Imaging, Financial Analytics, Seismic Processing,
and more

• Initial release on Windows, followed by Linux

– IA-32 and Intel® 64

– Works with Intel® C/C++ Compiler, Microsoft* Visual
C++*, and GCC*

– Works with Intel® VTune™ Analyzer

32

When do we recommend what?

• TBB can be considered the lead or default option for hands-on
parallel programmers

– General solution - addresses the most use cases, supports system
access

– Widely available - open source and compiler independent

• Compiler extensions (e.g. Cilk) target minimal syntax changes

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• Compiler extensions (e.g. Cilk) target minimal syntax changes

– Provides the easiest way to introduce parallelism into an app

– OpenMP involves less invasive code changes for very regular, singly-nested
loops

– When a compiler is preferred vs. a library

– Unique in supporting FORTRAN

Summary

• Ct enables you to write simple parallel algorithms
in standard C++

•Ct can get you performance on Intel Architecture
today

• Ct apps scale to future architectures: Larrabee,
SandyBridge (+AVX),and beyond

• Ct will intermix with other parallel programming

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• Ct will intermix with other parallel programming
models and tools

Ct extends the many choices that Intel provides for Parallel Computing

Any questions ?

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

35

