Parallel Programming Models

Dr. Mario Deilma
Intel Compiler and Langue

(i/nteD‘ Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

Software
Products *Other brands and names are the property of their respective owners.

Our Vision:_Making models survive intel’
future architectures L-/

Single Source - portable across systems and into the future

S

(i/nteD‘ Software & Services Group, Developer Products Division

|§ojtware Copyright © 2009, Intel Corporation. All rights reserved.
rrrrrr

*Other brands and names are the property of their respective owners.

Today’s Parallelism

e There are lots of programming options
from Intel: Ct
— Old recommendations (e.g. OpenMP) Cilk
- Newer recommendations (e.g. TBB, Ct) RapidMind
- New acquisitions (i.e. Cilk, RapidMind) OpenMP

MPI
- Competitive offerings (e.g. OpenCL, CUDA) OpenCL

Xntask
e An initiative (or a few initiatives) to CnC
clarify the programming options for our
customers

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

POSIX* pthreads*: Example

#include <stdio.h>
#include <pthread.h>
constint num_threads =4

void* thread_func(void* arg) {
do_work();
return NULL;
}
main() {
pthread t threads[hum_threads];
for(int 1 =0;i <num_threads; i++)
pthread create (&threads[i], NULL, thread func, NULL);

for(int j = 0;] < num_threads; j++)
pthread_join (threads[j], NULL);

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenMP* Threads: Implicit

Create Split loop iterations Make local variables
Threads among threads for each thread

_

#pragma omp parallel for private{pixelX,pixelY)

for (pixelX = 0; pixelX <imageWidth; pixelX++)

{
for (pixelY = 0; pixelY <imageHeight; pixelY++)

{
newlmage[pixelX,pixelY] =
ProcessPixel(pixelX, pixelY, image);

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

General MPI Program Structure [intel’

C/C++

NPT include file

#include "mpi.h"
int main(argc,argv){
rc = MPI_Init(&argc,&argv);
if (rc != MPI_SUCCESS) {

printf ("Error starting MPI program. \n");

MPI_Abort(MPI_COMM_WORLD, rc);

}
MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

printf ("Number of tasks= %d My
rank= %d\n",ntasks,rank);

/******* do Some WOl'k *******/

Terminate MPT Environment MPI_Finalize();

}

Initialize WPI environment

Do work and make message passing calls

:i@ , Software & Services Group, Developer Products Division

Software 0]
Products

g}](_z;}apyright © 2009, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What about the other approaches ?

(i/nteD‘ Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

What about Cilk++ ?

=

e Cilk++ offers a compiler keyword alternative to
TBB

e Every Cilk program preserves the serial semantic

e Cilk provides performance guarantees since it is
based on theoretically efficient scheduler

e There are three additional keywords: cilk, spawn
and sync

e Cilk uses parallel stacks (cactus stacks) in contrast
to linear stacks (TBB)

e Beta starts in ~ Q2 2010

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Cilk - The main principle (intel’

e The programmer should be responsible
for exposing the parallelism:

- identifying elements that can safely be executed in
parallel

e It should then be left to the run-time environment,
particularly the scheduler, to decide during
execution how to actually divide the work between
processors.

— It is because these responsibilities are separated that

a Cilk program can run without rewriting on any
number of processors, including one.

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Fibonacci - recall the functionality

-
it &
—
=
|
=

0o |1 1 2 |3 5 |8 13 21 34 |55 89 144 233 377 610 987 1597 2584

Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

Products *Other brands and names are the property of their respective owners.

nth Fibonacci number - C (intel’

Int fib (int n) {
If (n<2) return (n);
else {
Int X,y,;
X = fib(n-1);
y = fib(n - 2);
return (x+y);

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Fibonacci — Cilk code (intel’

cilk intfib (int n) {

If (n<2) return (n);

else {
Int X,y,;
X = spawn fib(n-1);
y = spawn fibo(n - 2);
Sync;
return (X+y);

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Basic Cilk Keywords

/_\ |dentifiesafunction asa
Cilk procedure, capable of

cilk —intfib (int n) { being spawned in parallel.

if (n<2) return (n);
else {

sync;
return (x+y);

Control cannot pass this point until all spawned
children have returned. The sync doneimplicitly
on every return

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Int X,y,;
X = spawn fib(n-1);
y = spayn fib(n-2);

(The named child Cilk
procedure can execute in
parallel with the parent

\caller.

~

/

Why Do We Need One More? (ihtel”

e So many cores, so hard to harvest parallelism

— Parallel programming is too hard for the masses of developers >
need to emphasize ease of use

— Data races are too easy to create, way too hard to debug >
preclude races through safety

— Target-specific specialization is required to get performance, but
makes code very difficult to maintain and port 2 raise to a natural
level of abstraction and enable forward scaling across architectures
and ISAs

— Uniform model for harvesting SIMD and thread-level parallelism in
either scalar kernels or array syntax - compiler + runtime

— ValArray too limited = universal set of operators across (even
irregular) data structures

Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

What about Threading Building Blocks ? (i"ntel’)

e [t's a C++ library and integrates nicely with the
STL

e TBB provides advanced C++ abstraction
concepts

e Particularly suited when parallelism is hidden in
generic C++ structures like containers &
iterators

e You specify task patterns instead of threads

e A task scheduler does the mapping to the
threads

e Targets threading for performance (not
usability)

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® Threading Building Blocks (intel’

Concurrent Containers
concurrent_hash_map

concurrent_queue
concurrent_vector

Synchronization Primitives
atomic operations
scoped locks

Miscellaneous

tick_count
tbb thread

Memory Allocation
tbb_allocator (new), cache aligned_allocator, scalable allocator

(i/nteD' Software & Services Group, Developer Products Division

|§o;‘tware Copyright © 2009, Intel Corporation. All rights reserved.
rrrrrr

*Other brands and names are the property of their respective owners.

... and OpenCL (intel’)

OpenCl is a portable intermediate low-level language layer for a
wide variety of different Hardware (FPA, GPU, Cell, CPU, ...)

e Intel is part of the OpenCL consortium

e Intel provided input for the specification

e Plans to have some OpenCL support out next year
e OpenCl is already available on Snow Leopard

My take on OpenCl
- Data parallel meets Task parallel on a very low abstraction level
— A good target language for API developers like Ct/RapidMind

— Programmers should use higher levels of abstraction such as
Ct/RapidMind, TBB, Cilk++ or OpenMP if at all possible

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Performance versus effort (intel.

Theoretical speedup limited by number of CPU’s per cluster MPI

Theoretical spga®

Threads

Code Performance

Theoretical speedup limited by Core

Serial optimization

Code Restructuring Development effort

(i/nteD‘ Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

Software
Products *Other brands and names are the property of their respective owners.

BUT - Today’'s On-going Realities —
— Programming parallel apps is productive than
sequential
— Non-deterministic programming errors (race conditions, ...)
— Performance tuning is extremely complicated
— Strong interest by ISVs for a parallel programming model
which is:
— Abstract: Avoid dealing with OS and HW details
- Simple: Deterministic, eliminate threading problems

— Fast & Scalable: Achievable through simpler
programming API

— Portable: Desire the flexibility to target various HW
platforms (CPU, LRB, GPU, Cell and a Mix)

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Where does Ct fit?

=

“Ct Technology: a new perspective on data-
parallel programming”

What's new and different?

e Why do we need one more programming model?
e Where does Ct fit within Intel other tools?
e Where does Ct fit within the rest of the industry?

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Forward Scaling with Ct (intel.

e Compile once, generating Ct
optimized, native IA code Object

e Dynamically reoptimize for: 7
— More cores

— More cache
— More bandwidth

— More instruction set
enhancements

(i/nteD‘ Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Design Constraints (intel’
Target language: C++

e C++ will continue to be the dominant languages for
high performance for the next 5+ years

...ahd we mean standard C++!

e Custom syntactic extensions face huge barriers to
adoption

e It is possible to design a desirable semantics

through an API-like interface with some Macro
magic

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners

Design Constraints (intel’
Target language: C++

e C++ will continue to be the dominant languages for
high performance for the next 5+ years

...ahd we mean standard C++!

e Custom syntactic extensions face huge barriers to
adoption

e It is possible to design a desirable semantics

through an API-like interface with some Macro
magic

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners

Ct’s Parallel Collections (intel"

Regular Vecs Irregular Vecs

o
e i
o

Ll

-
o

-

VecNested

Vec2D

Veclndexed

& growing...

Priorities: VecSparse, Vec2DSparse, VecND

Vec<Tuple<...>>

(i/nteD‘ Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Ct Semantics [ifntel')

The basic type in Ct is a polymorphic collection called a
Vec
—Vecs are managed by the Ct runtime
—-\Vecs are single-assignment vectors
—-Vecs are flat, multidimensional, sparse, or nested

—Vec values are exclusively created & manipulated through Ct
API

Declared Vecs are simply references to immutable values
Vec<F64>DoubleVec; // DoubleVec can refer to any vector of doubles

bbubIeVec = Srcl + Srcz;

DoubleVec = Src3 * Src4;

Assigning a value to DoubleVec doesn’t modify the value
representing the result of the add, it simply refers to a new
value.

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Segregated C/C++ and Ct Spaces (intel’

C/C++ space Ct space

copyin

C(++)

Ct code

copyout

Ct is garbage collected; practically, a small number of
Vecs are uncollected by compiler (ref counting)

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

“““““““ *Other brands and names are the property of their respective owners.

Apply Functions: Black Scholes for intel
Options Pricing L-/

float s[N], x[N], r[N], v[N], t[N]; Vec<F32> BlackScholes(Vec<F32> S, Vec<F32> X,
float result[N]; Vec<F32> R, Vec<F32>V, Vec<F32>T)
{

_cY

Vec<F32> S(s, N), X(x, N), R(r, N), V(v, N), T(t, N); Vec<F32> d1 = S/ In(X);

dl+=(R+V*V*0.5) *T;

Vec<F32> d1 = S/ In(X); d1 /= sqrt(T);

dl+=(R+V*V*0.5() *T; Vec<F32>d2 =d1 - sqrt(T);

d1 /= sqrt(T);

Vec<F32>d2 =d1 - sqrt(T); Vec<F32>tmp=X*exp(R*T) *

(1.0f - CND(d2)) + (-S) * (1.0f - CND(d1));
Vec<F32>tmp =X *exp(R*T) *
(1.0f - CND(d2))+(-S)*(1.of - CND(d1)); return tmp;
}
copyOut(tmp, result, N * Sizeof(float));

i float s[N], x[N], r[N], V[N], t[N];
float result[N];
ct
Red color shows the Vec<Fa2> S(s, N), X(x, N, R(r, N), Vv, N), T(t N \
differences between tmp = call(BlackScholes)(S, X, R, V, T);
1 ” 0 . . It N * Sizeof(f ;
normal and fu nction Ct }_etrr]ndocgopy ut(result izeof(float))
code

(i/nteD' Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.
Produets *Other brands and names are the property of their respective owners.

ROI Crossover Graph ;

top 10% make this jump

roi crossover

PERFORMANCE

firetown

hand-tuned
hand-tuned
hand-tuned
hand-tuned
hand-tuned
hand-tuned

7

EFFORT

(i/nteD' Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

Products

*Other brands and names are the property of their respective owners.

Key Features and Benefits - Productivity (i"ntel’)

e Integrates with existing IDEs, tools, and compilers: no new
compiler needed

e Incremental: allows selective and targeted modification of
existing code bases

e Generalized data parallel model: widely applicable to many
types of computations

e Safe by default: deterministic semantics avoid race conditions
and deadlock by construction

e Easy to learn: serially consistent semantics and simple interface
leverage existing skills

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Key Features and Benefits - Portability (ifntel’)

e High-level: avoids dependencies on particular hardware
mechanisms or architectures

o ISA extension independent: common binary can exploit
different ISA extensions transparently

e Hardware independent: Allows choice of deployment hardware
today: including scaling to many cores

e Scaling: Allows migration and forward-scaling: will support AVX,
Larrabee and beyond

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Language Vehicle for General Purpose Parallel

Programming (intel‘)

Ct Api
- Nested Data Parallelism
- Deterministic Task Parallelism

Deterministic parallel programming

Fine grained concurrency and synch
Dynamic (JIT) compilation
High-performance memory management

Forward-scaling binaries for SSEx, LRBNI

Parallel application library development

Performance tools for Future Archi

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

What Does the Product Based on Intel
Ct Technology Look Like?

e Core API
- Flexible, forward scaling data parallelism in C++

e Application Libraries

— Linear Algebra, FFT, Random Number Generation
— Powered by Intel® Math Kernel Library (Intel® MKL)!

e Samples

— Medical Imaging, Financial Analytics, Seismic Processing,
and more

e Initial release on Windows, followed by Linux
- [A-32 and Intel® 64

— Works with Intel® C/C++ Compiler, Microsoft* Visual
C++*, and GCC*

— Works with Intel® VTune™ Analyzer

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

When do we recommend what? (ihtel"

e TBB can be considered the lead or default option for hands-on
parallel programmers

— General solution - addresses the most use cases, supports system
access

— Widely available - open source and compiler independent
e Compiler extensions (e.g. Cilk) target minimal syntax changes

— Provides the easiest way to introduce parallelism into an app

— OpenMP involves less invasive code changes for very regular, singly-nested
loops
- When a compiler is preferred vs. a library
— Unique in supporting FORTRAN

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Summary [ifntel)*

e Ct enables you to write simple parallel algorithms
in standard C++

e Ct can get you performance on Intel Architecture
today

e Ct apps scale to future architectures: Larrabee,
SandyBridge (+AVX),and beyond

e Ct will intermix with other parallel programming
models and tools

Ct extends the many choices that Intel provides for Parallel Computing

(i/nteD‘ Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

(i/nteD‘ Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

Products

*Other brands and names are the property of their respective owners.

