Astrophysics with LISA

Alberto Vecchio

University of Birmingham – UK

5th LISA Symposium ESTEC, 12th – 15th July 2004

1 - C

Galactic Binaries: (Including future Ia supernovae) Compact Objects Orbiting Massive Black Holes (High-precision probes of high-field gravity)

Formation of Massive Black Holes (Quasar Cores) Before Star Formation

Fluctuations from Early Universe (before recombination formed 3° background)

LISA: GW telescope

- LISA is an all-sky monitor:
 - All sky surveys are for free
 - "Pointing" is done in software
- Signals are (for the vast majority) long lived
- Information about sources are reconstructed through structure of signal
 - Intrinsic in the waveform
 - Induced by instrument motion and response
- Each signal depends (with a few exceptions) on 7-to-17 parameters

- One yr of LISA data contain:
 - A dozen of known solar mass binaries (verification sources)
 - ~ 10000 WD binaries (a few with NS companion)
 - ~ 100 EMRIs
 - ~ 10 I/M/SMBH binaries
 - Some short lived burst events
 - Stochastic foregrounds and backgrounds

Astrophysics and cosmology

• (Compact) stars:

- Primarily white dwarfs
- But also neutron stars
- And possible mainsequence and/or supermassive stars
- Star formation rate
- Black hole demographics (from 1 to 10⁸ Msun)
 - Our galactic centre
 - Stellar mass BHs
 - Intermediate mass BHs
 - Massive BHs
 - Super-massive BHs

- Dynamics in
 - Star clusters
 - Galactic nuclei
- Hierarchical clustering
 - The very first structures
 - Structure formation
 - Galaxy merger history
- Cosmology:
 - Dark energy
 - Early-Universe: The first second of cosmic time

Galactic WD binaries

- LISA is expected to provide the largest observational sample of white dwarfs (WDs)
 - Very large number in frequency space

$$\frac{dN}{df} = 2 \times 10^8 \, Hz^{-1} \left(\frac{0.001 \, Hz}{f}\right)^{11/3}$$

- WDs are detected as
 - Individual deterministic signals (primarily for f > 3 mHz)
 - Astrophysical foreground (for f < 3 mHz large number of sources per frequency bin)

Galactic WD (/NS) binaries

Туре	Birth rate (year ⁻¹)	Resolved systems	With frequency change
(wd, wd)	2.9×10^{-2}	12 163	560
AM CVn	1.8×10^{-3}	10117	49
(ns, wd)	1.4×10^{-4}	21	3
(ns, ns)	3.2×10^{-5}		0
(bh, wd)	3.8×10^{-5}	1	0
(bh, ns)	1.0×10^{-5}	0	0
Total		22 303	614

Main challenge for data analysis: identify, measure parameters, and remove "lines"

- Map (partially 3D) of WDs in the galaxy
- For ~100 systems, studies of:
 - Tidal interaction
 - Mass transfer
- If follow-on optical observations are available (for some objects):information on M-R relation (Cooray and Seto, 2004)

Galactic WD foreground

Foreground from galactic WD binaries

- Dominates instrumental noise: detectable at high SNR (Tinto et al, 2000; Hogan and Bender, 2001)
- Anisotropic (Giampieri and Polnarev; 1997)
 - A few moments of the distribution are detectable (Cornish, 2001; Ungarelli and AV, 2001; Seto and Cooray, 2004)
 - Source number density (and formation rate)
 - Angular distribution and map

Extra-galactic WD foreground

- If detectable:
 - High redshift (z ~1) distribution of sources
 - Evolution of star formation rate as a function of z
- LISA noise floor is essentially set by brightness of sky

5th LISA Symposium

Stars in galactic centres

- Low mass (a few x 0.I Msun) main sequence star orbiting Sgr A* (Freitag, 2001, 2003; Barack and Cutler, 2004)
- Super-massive stars in quasar disks (Goodman and Tan, 2004)

Massive black hole (~ 10⁶ Msun)

LISA Sensitivity

Our galactic centre

Mass of the 2.6 $\times 10^{6}$ Msun BH in Sgr A* measured to ~0.005 – 0.2 accuracy

Very accurate measurement of spin (error ~ 0.005)

Event rate: ~ a few (possibly optimistic) during mission lifetime

5th LISA Symposium

Extreme mass ratio in-spiral: EMRI = (IM)BH + (S)MBH

Detection rate

M_{\bullet}	m	LISA	
		Optimistic	Pessimistic
300 000	0.6	8	0.7
300000	10	700^{*}	89
300000	100	1^{*}	1^{*}
1000000	0.6	94	9
1000000	10	1100^{*}	660^{*}
1000000	100	1*	1^{*}
3000000	0.6	67	2
3000000	10	1700^{*}	134
3000000	100	2^{*}	1^{*}

(Gair et al, 2004)

5th LISA Symposium

Extreme mass ratio in-spirals

$$(\mathrm{SNR}_{\mathrm{I}})_n^2 = \int (h_{c,n}/h_n)^2 \, d(\ln f)$$

- Extremely complicated signals:
 - Highly eccentric orbits
 - Non-equatorial orbits
 - (Rapidly) spinning black holes
- Major challenge for
 - Waveform computation
 - Data analysis

⁽Barack and Cutler, 2004)

Astrophysics with EMRI

- Demographics (up to z ~1) of:
 - (Super-)Massive black holes in the centre of galaxies
 - Compact stars (e.g. WDs) and stellar-to-intermediate mass BHs
- Measure:
 - Masses with relative error $10^{-4} 10^{-3}$
 - Spin magnitude with error 10⁻⁴ and direction within error ~ 0.02 srad
 - Distance with relative error ~ 0.1

- Detection rate and physical parameters provide information on:
 - Populations of compact stars and BHs inside galactic nuclei
 - Dynamics in galactic cores
 - Multiple body interactions
 - Loss cone
 - Mass segregation

Intermediate mass BHs

- (S)MBH IMBH
 - Event rate: >1 for whole mission
 - Possibly IMBH formation from accretion disk fragmentation (Levin, 2003)
- IMBH IMBH/BH in local/low-redshift universe
 - Event rate possibly too low for LISA
- IMBH IMBH at very high redshift (10 < z < 20)
 - Event rate: ~ 10 / yr

Frequency range 0.01 – 1 Hz is crucial

IMBH - IMBH (z >> 1)

• Demographics of the first generation(s) of black holes:

- Masses with fractional error
 ~ 10⁻⁴ 10⁻²
- Spin with error ~ 0.01
- Distance with fractional error
 ~ 10% 30 %
- Detection rate and physical parameters provide "orthogonal" trace of structure formation:
 - Merger history of galaxies

(Sesana et al, 2004; cf also Islam et al, 2004)

5th LISA Symposium

(Super) Massive black holes

5th LISA Symposium

Astrophysical Scenario

- BH commons in galaxy centres
- Hierarchical clustering: galaxies merge and BH pair forms
- Stages in binary evolution

1. Dynamical friction (efficient)

$$t_{\rm df} = \frac{4 \times 10^{6} \,\rm{yr}}{\rm log N} \left(\frac{\sigma_{\rm c}}{200 \rm{km s^{-1}}}\right) \left(\frac{r_{\rm c}}{100 \rm{pc}}\right)^{2} \left(\frac{10^{8} M_{\rm sun}}{m}\right)$$

2. Hard binary

$$a \le \frac{Gm_2}{4\sigma_c^2} = 2.8 \,\mathrm{pc} \left(\frac{m_2}{10^8 M_{\mathrm{sun}}}\right) \left(\frac{200 \,\mathrm{km \, s^{-1}}}{\sigma_c}\right)^2$$

3. Radiation reaction takes over

$$t_{\rm gr}(a) = 5.8 \times 10^6 \,\mathrm{yr} \left(\frac{a}{0.01 \,\mathrm{pc}}\right)^4 \left(\frac{10^8 M_{\rm sun}}{m_1}\right)^3 \frac{m_1^2}{m_2(m_1 + m_2)}$$

Astrophysics with (S)MBHs

- Event rate:
 - One event out to z ~ 5 (Merritt and Eckers, 2002)
 - Possibly more at higher redshift
- Very accurate demographics (Cutler, 1998; Hughes, 2002; Seto 2003, 2004; Moore and Hellings, 2003; AV, 2004):
 - Masses known with fractional error ~ 10⁻⁴ or better
 - Spins with error ~ 10^{-3}
 - Fractional error on distance
 1% 0.1%

- Can we use them as standard candles? D(z) and dark energy
 - Easy to alert astronomers (merger time can be predicted with error < a few min), but error box possibly too big
 - Weak lensing makes things worse (Holz and Hughes, 2004)
- Dynamics and structure in the central (sub-) parsec region of galactic nuclei
 - Stellar dynamics, loss cone
 - Gas dynamics
 - Triaxiality

Early-Universe cosmology

5th LISA Symposium

Cosmic GW background

- Slow-roll inflation is not detectable (sky is too bright; Ungarelli and AV, 2001)
- Speculative models, but exciting possibilities
 - First-order phase transitions (Apreda et al, 2001), Ω ~ 10⁻¹¹
 - Extra-dimensions (as strong as Ω ~ 10⁻⁷; Hogan, 2000)
 - Kinks/Cusps in cosmic strings (Damour and Vilenkin, 2000), still well above the noise

Conclusions

- LISA will have a major impact on astrophysics and cosmology
- We have a much better understanding of <u>what</u> we can learn from LISA
- ... but we do not know yet **how**:
 - Effort (waveforms, data analysis strategies, ...) is needed to secure optimal science exploitation of the LISA data
 - The way in which we approach GW astronomy from space is very different form the way we approach it from ground