

LSC Data Analysis

Patrick Brady University of Wisconsin-Milwaukee for the LIGO Scientific Collaboration

LSC Interferometers

LIGO Hanford: 4km & 2km interferometers in same vacuum envelope

GEO Hannover: 600m interferometer

The LIGO Scientific Collaboration

Experience with Data Taking

7/13/2004

Details of Science Runs

- S1 17 days in August / September 2002
 - » Four detectors operating: LIGO (L1, H1, H2) and GEO600
 - » Triple-LIGO-coincidence (96 hours)
 - » Four S1 astrophysical searches published (Phys. Rev. D 69, 2004):
 - Binary neutron stars (122001)
 - Bursts (102001)
 - Known pulsar (J1939+2134) with GEO (082004)
 - Stochastic background (122004)
- S2 59 days in February-April 2003
 - » Four interferometers operating: LIGO (L1, H1, H2) and TAMA300 plus Allegro bar detector at LSU
 - » Triple-LIGO-coincidence (318 hours)
 - » Searches under way (some preliminary results)
- S3 70 days in October 2003-January 2004
 - » Analysis ramping up...

Target Sources for LSC Data Analysis

- Compact binary systems
 - » Black holes and neutron stars
 - » Inspiral and merger
 - Probe internal structure, populations, and spacetime geometry
- Spinning neutron stars
 - » LMXBs, known & unknown pulsars
 - » Probe internal structure and populations
- Bursts
 - » Supernova explosions
 - » Tumbling or convection in NS birth
 - » Correlations with EM observations
- Stochastic background
 - » Big bang & other early universe
 - » Background of GW bursts

Inspiral Group Activities

- Binary Neutron Star Search
 - » Unbiased search; upper limit on rate in absence of detection
 - » Initial LIGO may see them, AdLIGO should have many
- Black hole MACHO binary search (0.5<m1,m2<1.0)
 - » Speculative source
 - » MACHO search uses same pipeline as BNS
 - » Unbiased search; upper limit will follow neutron star result
- Binary black hole search (m1,m2 > 3.0 Msun)
 - » May be most promising source
 - » Inaccurate theoretical predictions lead to complications in analysis
 - » Detector characterization of great importance

LIGO S1 Binary Neutron Star Inspi

S2 Binary Neutron Star Inspiral Search

- Recorded over 1200 hours of data
 - » Did not use single IFO or H1/H2 only data
 - » Applied "data quality" cuts
 - » Applied auxiliary channel "vetoes"
- Used 355 hours of data in search
 - » Other data will be used in coincidence with TAMA

- Required triggers to be coincident in time and mass from at least two detectors
- Population includes
 - » MW, MC's, M31-M33
 - » LLO 4k: 1.8 Mpc
 - » LHO 4k: 0.9 Mpc
 - » LHO 2k: 0.6 Mpc

LIGO

S2 Background Estimation and Empirical Coherent Statistic

11

Preliminary S2 Triggers Observed

LIGO

S2 Rate Upper Limit

- Use loudest event to determine rate
 - » No event candidates (real or background) were observed with $\rho \,$ > ρ_{max}
- Observation time (T_{obs}) : 355 hours
- Measure detection efficiency at ρ_{max} using Monte Carlo simulation
 - » $N_{\rm G}$ = Number of Milky Way Equivalent Galaxies accessible at ρ > $\rho_{\rm max}$
 - » Conservative lower bound on $N_{\rm G}$ = 1.14 ("worst case" for all systematic uncertainties to obtain this value)
- Obtain a one-sided frequentist confidence interval on rate:

R_{90%} < 50 / yr / MWEG

Burst Group Activities

- Search for bursts of unknown origin/waveform
 - » Generate event triggers using variety of methods
 - TFCLUSTERS, POWER, WAVEBURST: time-frequency methods
 - BLOCKNORMAL: time-domain change point analysis
 - » Veto triggers due to instrumental artifacts
 - » Uninterpreted result is limit on rate of GW bursts
 - » Interpreted result uses Monte Carlo injections of astrophysical motivated signals (Zwerger et al) and other burst waveforms
- Search for bursts associated with GRB's.
 - » Triggered analysis of on-source times
 - » Result by comparison of on-source versus off-source distributions
 - » First EM triggered search with LIGO
- Other searches to come
 - » Ringdowns (overlap with inspiral); cosmic string cusps/kinks

Burst Search of S1 Data

G040390-00-Z

7/13/2004

LIGO

S2 Search for Bursts

- Search for burst shorter than about 1 sec
 - » Require strict triple coincidence between two Hanford and one Livingston interferometer
 - » Generate triggers from each instrument using 4 different search techniques
 - » Follow up coincident triggers with a coherent analysis of data
- Search provides about factor of 15 improvement over S1
 - » x10 for instrumental sensitivity / stability
 - » x1.5 for more sophisticated analysis

LIGO

Gravitational Waves associate with γ-Ray Bursts

- Methodology:
 - » Cross-correlate data from multiple instruments near GRB trigger time
 - » Use times away from GRB to estimate false alarm rates
 - » Similarly, use times away from GRB to estimate false dismissal rates for signal models
 - » Method was exercised in S1 but no results appeared
- GRB 030329
 - » Detected by HETE-2, Konus-Wind, Helicon/KoronasF
 - » Especially close: z = 0.1685; dL=880Mpc
 - » Strong evidence for supernova origin of long GRBs.
 - » H1, H2 operating during, preceding burst
 - » Paper will appear soon; preliminary results at GR 17

Continuous Wave Group Analysis

- Known pulsar searches (f = 2 f_{rot})
 - » Catalog of known pulsars with accurate ephemerides
 - » Heterodyne narrow BW folding data
 - » Coherent frequency domain search using Hough transform
- Coherent frequency domain method
 - » Targetted searches (e.g. galactic core)
 - » LMXB search (e.g. ScoX-1)
 - » All sky, broadband search
- Incoherent searches
 - » Account for frequency modulation of source by appropriate averages of short-time power spectra
- In the future

» will implement a *hierarchical* incoherent/coherent analysis approach G040390-00-Z

7/13/2004

LISA Symposium

S1 Pulsar Search Results

- Detection algorithms remove:
 - » frequency modulation of signal due to Earth's motion relative to the Solar System Barycenter, intrinsic frequency changes.
 - » amplitude modulation due to the detector's antenna pattern
- Search for waves from PSR J1939+2134
 - » No evidence of continuous wave emission.

- Previous observational limits
 - » $h_o < 10^{-20}$ (Glasgow, Hough et al., 1983),

G040390-00-Z

7/13/2004

»

LISA Symposium

 $h_o < 3.1(1.5)x10^{-17}$ (Caltech, Hereld, 1983).

LIGO S2 Search for Gravitational Waves from Known Pulsars

- Target 28 pulsars:
 - » with known ephemerides
 - » gravitational wave freq > 50 Hz
- Figure shows limits on strength of gravitational waves from known pulsars assuming gravitational waves are responsible for all observed spindown

28 Pulsars Targeted for S2

B0021-72C	B0531+21 (Crab)	J0711-6830	J1910-5959B
B0021-72D	B1516+02A	J1024-0719	J1910-5959C
B0021-72F	B1820-30A	J1629-6902	J1910-5959D
B0021-72G	B1821-24	J1721-2457	J1910-5959E
B0021-72L	B1937+21 (S1)	J1730-2304	J1913+1011
B0021-72M	B1951+32	J1744-1134	J2124-3358
B0021-72N	B0030+0451	J1748-2446C	J2322+2057

• There are 38 known isolated radio pulsars with f_{GW} > 50 Hz

» includes PSR J1939+2134 (S1 target) and the Crab pulsar

- Timing information for 28 pulsars:
 - » Radio observations collected over S2/S3 for 18 by Kramer, Jodrell Bank
 - » ATNF catalogue used for 10 others
- Remaining 10 pulsars not included in the analysis because outdated spin parameters would require more that one template

S2 Targeted Pulsar Search Results

- Assume waves from non-precessing, triaxial source with known position, spindown, and frequency
- Bayesian analysis with the following unknowns
 - » h₀ amplitude (uniform prior)
 - $\approx \psi$ polarization angle (uniform prior)
 - \approx 1 angle between rotation axis and line-of-sight [uniform in cos(*i*)]
 - $\approx -\varphi_0$ initial phase of pulsar
- Time-domain analysis of 28 known pulsars complete
- Best upper limit
 - » PSR J1910-5959D: h₀ = 1.7 x 10⁻²⁴
 - » PSR J2124-3358: ε = 4.5 x 10⁻⁶
- Upper limit on Crab pulsar is about a factor of 30 from spindown limit
- Detailed results will be presented at GR 17

Stochastic Analysis Group

 Cross-correlate output from multiple interferometers to detect correlated gravitational wave background of cosmological or other astrophysical origin

» Flat spectrum for gravitational waves

- Use the Livingston-Allegro data to perform a narrow band search exploiting the ability of Allegro to modulate signal by rotating
- Explore alternative spectral characteristics for gravitational wave background

S1 Stochastic Search Results

- Final analysis obtained best limit from H2-L1 data
- H1-H2 was dominated by instrumental correlations at SNR ~10

At 90% confidence $\Omega_0 h_{100}^2 < 23$

 Published: "Analysis of First LIGO Data for Stochastic Gravitational Waves", PRD <u>69</u>, 2004.

7/13/2004

Stochastic models, limits

LIGO S2 stochastic search preliminal

G040390-00-Z 7/13/2004

LISA Symposium

LIGO End to End Check of the Anal

- Calibration lines are always present.
- At several times, we inject fake signals by shaking mirrors, to check that they are properly recovered by search pipelines.
- Those *hardware injections* are supplemented by many additional signals added in software.
- Extensive reviews of
 - » search software, and of
 - » complete analysis results.

Concluding Remarks

- S1: Analyses are now complete and published
- S2: Broader base of analyses and explorations of data
 - » More sophisticated analyses now solidly underway
- S3: LIGO interferometers within a factor of 2-3 of design sensitivity
 - » Gearing up with possible approach to combine S2/S3 results in some cases
 - » Improved sensitivity provides access to many galaxies for binary inspiral searches
 - » Core searches are getting easier
- Expect a 6-month long run during 2005, at or near design sensitivity
- At LIGO-I design sensitivity, we might see
 - » a NS binary inspiral, a burst from cosmic string cusp, CW signals from the Crab pulsar, a cosmological stochastic background if we get lucky or, a surprise!
- Advanced LIGO ought to record many signals.

G040390-00-Z

7/13/2004