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•  Light-weight test mass suspended as
    inertial member of a low frequency
    torsion pendulum, surrounded by
    sensor housing

 

•  Precise study of residual couplings
    to sensor and disturbance sources

•  Measure stray forces 
    as deflections of pendulum 
    angular rotation

Torsion Pendulum Ground Testing of GRSTorsion Pendulum Ground Testing of GRS
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The Trento Torsion Pendulum FacilityThe Trento Torsion Pendulum Facility



GRS prototype in vacuumGRS prototype in vacuum



•  electrostatic shields

•  electrical heaters 

•  motorized rotational stage

•  UV light fiber

Plus ... bare tungsten fiber, Gold coated torsion member and stronger turbo-pump

•  tunable Test-Mass support

Hardware Upgrades in 2004Hardware Upgrades in 2004



Typical Torsional Angular Noise Spectrum
• Approaching pendulum thermal noise above 0.2 mHz
• Dominated by temperature stability at low frequencies

Torsion Pendulum PerformancesTorsion Pendulum Performances

Limited by Read-out:

Limited by Pendulum Thermal Noise



Torque noise measurements:Torque noise measurements:

Torque noise calculated from angular noise and pendulum transfer function
• torque noise below 10 fN m Hz -1/2 (0.35mHz - 9 mHz)
• minimum noise at 2mHz: 3fN m Hz-1/2



• most stringent torque-force conversion (armlength  10 mm)
• roughly factor 5 above LTP goal at 1mHz   (assuming 2kg TM) 
• minimum: 250 fN Hz-1/2  (1-3 mHz)

Force noise measurements:Force noise measurements:



•  Search for all sources of force gradients or spring-like coupling 
   between  sensor and TM, measure overall coupling
•  Major contributions given by Sensing Bias and TM charge

Sensor-Test Mass Stiffness measurements: Sensor-Test Mass Stiffness measurements: 
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• sources of translational stiffness typically also produce rotational stiffness 



•  Search for all sources of force gradients or spring-like coupling 
   between  sensor and TM, measure overall coupling
•  Major contributions given by Sensing Bias and TM charge

Sensor-Test Mass Stiffness measurements: Sensor-Test Mass Stiffness measurements: 

Sensor 
Housing

TM

• sources of translational stiffness produce also rotational stiffness 



•  Search for all sources of force gradients or spring-like coupling 
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•  Major contributions given by Sensing Bias and TM charge
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SENSOR ON

SENSOR OFF

• Coherent torque excited by square wave oscillation of sensor rotation angle,  
  using a rotational motorized stage

• produce a square wave torque proportional to the stiffness
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SENSING BIAS ON

SENSING BIAS OFF

 Sensing Stiffness SENS =  - 89.2 ± .5  pN m / rad 
consistent with previously measured value

  Extra stiffness 0 =  - 12.0 ± .3  pN m / rad  
could be explained by 115 mV RMS patch voltages 

or residual of trans-twist interaction

0 Sens



Results:

•                                                [ANSYS prediction: 1.77 nF/rad2, Diana Shaul]

•     [likely a patch charge effect between 4 electrodes used 
    in charge measurement and rest of sensor]
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Confirmation of charge – stiffness modelConfirmation of charge – stiffness model
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• developed a technique for
  measuring TM voltage drop
  to ground

• optical fiber with UV light 
  installed for charge management
  (with Imperial College - London)



Measurement of dielectric loss angle:Measurement of dielectric loss angle:

Lossy layer on sensing 
electrodes

• Dielectric losses contribute
  to voltage thermal noise

• Mixing with DC voltages
  produces Force Noise 

…adsorbed dipole layer, 
electron hopping among 
work-function minima…

• Pendulum ringdown measurements to date have proved irreproducibile 
 at a level which prevents extraction of  better than 10-4
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Electrode voltage: 

No losses

Ohmic delay

 constant

V1 V2

Measurement of dielectric losses: new direct measurement techniqueMeasurement of dielectric losses: new direct measurement technique

Force

(cos 2t)

(sin 2t)

• Direct measurement technique: 

• A square wave voltage passing through the 
capacitor feels a delay created by lossy elements

• Application of perfect square wave yields constant force (F ~ V2)

• Any lossy element creates delays and thus force transients

)1(0 iCC 



Measurement of dielectric losses: the measurement techniqueMeasurement of dielectric losses: the measurement technique

DC Bias effect

Force transient due to delay

390 k

19 nF

• Application of perfect square wave yields constant force
• Any lossy element creates delays and thus force transients

Application through 
an ohmic delay

( ≈ 7 ms,  ≈ 2 10-5)



Measurement of dielectric losses: the measurement techniqueMeasurement of dielectric losses: the measurement technique

DC Bias effect

• Application of perfect square wave yields constant force
• Any lossy element creates delays and thus force transients

Direct application 
(f = .4 mHz)



•  very sensitive (can resolve ≈ 10-6)
•  preliminary measurements indicate  of order 10-6    (LTP / LISA goal 10-5)
•  calibrations performed with Ohmic losses
•  need to also calibrate for non-Ohmic loss angles ( independent of frequency), 

... currently in progress 

Measurement of dielectric losses: preliminary resultsMeasurement of dielectric losses: preliminary results



Thermal Gradient Related Effects:Thermal Gradient Related Effects:

4 independent 
electrical heaters to 

apply rotational 
thermal gradients

• Search for temperature gradient induced torques in excess 
  of that expected for radiometric and radiation pressure effects

• Outgassing effect difficult to predict (virtual leaks, impurities…)

q1W q2W

q1E q2E



Thermometers



• Alternate 0.2Watts on opposed electrodes (1W-1E) @ 0.5mHz
• Temperature measured in vicinity of heaters
• Tave C

q1W



• Alternate 0.2Watts on opposed electrodes (1W-1E) @ 0.5mHz
• Temperature measured in vicinity of heaters
• Tave C

q1E



• Alternate 0.2Watts on opposed electrodes (1W-1E) @ 0.5mHz
• Temperature measured in vicinity of heaters
• Tave C

q1W



• Alternate 0.2Watts on opposed electrodes (1W-1E) @ 0.5mHz
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• Pendulum coherent response: 
equilibrium position changes every 1000s

• Vacuum chamber Pressure 5 10-8 mbar



Thermal gradient effects as function of pressure and temperatureThermal gradient effects as function of pressure and temperature

Preliminary results:
• measured torque is consistent with radiometric+radiation pressure effects

(factor  2 uncertainty in effective temperature gradient) 
• no evidence of huge temperature dependent outgassing effects!

Investigation needed:
• pressure and temperature interpretation 
• applied effective thermal gradient modeling

Measurement of induced torque
as function of pressure and 

temperature 
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Summary of main results:Summary of main results:

• More stringent upper limits to stray forces (extending to lower frequencies)

• Measured Overall Spring-like coupling

• New technique for measuring dielectric loss angle  

• Thermal gradients induced effects under investigation ……

• Charge measurement technique successfully demonstrated

• Charge Control based on UV light demonstrated

• Stray DC bias voltage measurement and compensation improved 


