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Torsion Pendulum Ground Testing of GRS

* Light-weight test mass suspended as
inertial member of a low frequency

torsion pendulum, surrounded by
sensor housing

* Measure stray forces

as deflections of pendulum
angular rotation

* Precise study of residual couplings
to sensor and disturbance sources
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The Trento Torsion Pendulum Facility




GRS prototype in vacuumi




Hardware Upgmdes in 2004
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Plus ... bare tungsten fiber, Gold coated torsion member and stronger turbo-pump



Torsion Pendulum Performances
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Typical Torsional Angular Noise Spectrum
» Approaching pendulum thermal noise above 0.2 mHz
* Dominated by temperature stability at low frequencies



Torue noise measurements.
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Torque noise calculated from angular noise and pendulum transfer function
* torque noise below 10 fN m Hz'? (0.35mHz - 9 mHz)
* minimum noise at 2mHz: 3fN m Hz!2




Force noise measurements.
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* most stringent torque-force conversion (armlength =~ 10 mm)

* roughly factor 5 above LTP goal at ImHz (assuming 2kg TM)
e minimum: 250 fN Hz'? (1-3 mHz)




Sensor-Test Mass Stiffness measurements.

 Search for all sources of force gradients or spring-like coupling
between sensor and TM, measure overall coupling
* Major contributions given by Sensing Bias and TM charge

Sensor
Housing

* sources of translational stiffness typically also produce rotational stiffness
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Sensor-Test Mass Stiffness measurements.
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» Coherent torque excited by square wave oscillation of sensor rotation angle,
using a rotational motorized stage

e produce a square wave torque proportional to the stiffness

N(t) =-T"-Ap(?)
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SENSING BIAS ON

» Sensing Stiffness ['g; g = - 89.2+.5 pN m/rad

consistent with previously measured value

> Extra stiffnessI'y= - 12.0+.3 pNm/rad

could be explained by 115 mV RMS patch voltages
or residual of trans-twist interaction




Confirmation of charge — stiffness model
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* developed a technique for
measuring TM voltage drop
to ground
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* optical fiber with UV light
installed for charge management
(with Imperial College - London)

Results: Lo + 1, =—111.2+.2 pN m /rad [sensor plus excess stiffness]

. 2¢C =1.84+.001 nF/rad® [ANSY'S prediction: 1.77 nF/rad?, Diana Shaul]

-20.2+.3mV [likely a patch charge effect between 4 electrodes used

* VOFF -
in charge measurement and rest of sensor]



Measurement of dielectric loss angle:

=
_— C=C,(1-i5)

...adsorbed dipole layer,
electron hopping among
work-function minima...

* Dielectric losses contribute
to voltage thermal noise

 Mixing with DC voltages I|~ S — 4k TC C;2 0

produces Force Noise Q)

* Pendulum ringdown measurements to date have proved irreproducibile
at a level which prevents extraction of o better than 10



Measurement of dielectric losses: new direct measurement technique

v, v,
o |l
 Direct measurement technique: J J
* A square wave voltage passing through the C=C.(1-i8
capacitor feels a delay created by lossy elements 0 ( / )

 Application of perfect square wave yields constant force (F'~ V?)

* Any lossy element creates delays and thus force transients

Electrode voltage: Force

No losses

Ohmic delay

O constant




Measurement of dielectric losses: the measurement technique

 Application of perfect square wave yields constant force
» Any lossy element creates delays and thus force transients

| |
Force transient due to delay:
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Measurement of dielectric losses: the measurement technique

 Application of perfect square wave yields constant force
» Any lossy element creates delays and thus force transients

Direct application
(f=.4 mHz)




Measurement of dielectric losses: preliminary results
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very sensitive (can resolve 6= 10-9)

* preliminary measurements indicate o of order 10° (LTP / LISA goal 10-%)
calibrations performed with Ohmic losses

need to also calibrate for non-Ohmic loss angles (6 independent of frequency),
... currently in progress



Thermal Gradient Related Effects:

* Search for temperature gradient induced torques in excess
of that expected for radiometric and radiation pressure effects

» Outgassing effect difficult to predict (virtual leaks, impurities...)

N\ A

4 independent
electrical heaters to
apply rotational
thermal gradients
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* Alternate 0.2Watts on opposed electrodes (1W-1E) @ 0.5mHz
» Temperature measured in vicinity of heaters

. T, ~22°C
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* Pendulum coherent response:

equilibrium position changes every 1000s
* Vacuum chamber Pressure = 5 103 mbar




Thermal gradient effects as function of pressure and temperature

Measurement of induced torque
as function of pressure and
temperature
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Preliminary results:
» measured torque is consistent with radiometric+radiation pressure effects

(factor ~ 2 uncertainty in effective temperature gradient)
* no evidence of huge temperature dependent outgassing effects!
Investigation needed:
» pressure and temperature interpretation
» applied effective thermal gradient modeling



Summary of main results:

* More stringent upper limits to stray forces (extending to lower frequencies)
» Measured Overall Spring-like coupling
» New technique for measuring dielectric loss angle

» Thermal gradients induced effects under investigation ......

* Charge measurement technique successfully demonstrated
* Charge Control based on UV light demonstrated

» Stray DC bias voltage measurement and compensation improved



