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Motivations
Gravitational waves (GW) from inspiralling compact binaries
(ICB) should be detectable by LIGO, VIRGO & proposed LISA.

ICBs are usually modeled as point particles in quasi-circular orbits
& post-Newtonian approximation to GR accurately describes
their dynamics.

A post-Newtonian (PN) approximation gives corrections to
Newtonian gravitational theory in terms of a small parameter
ν ∼ (v/c)2 ∼ (Gm/c2 r), where m, v & r are the total mass,
orbital velocity and the separation of the binary.

However, ICBs in eccentric orbits are probably most promising
sources of GWs for LISA.
Plausible sources for LIGO & VIRGO too.
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The ‘ready to use’ templates
The widely used gravitational wave templates, to detect
gravitational waves from compact binaries in quasi-circular orbits.

They consists of PN accurate expressions for h+ & h×,
supplemented by expressions giving adiabatic time evolution for
the orbital phase and frequency.
Blanchet, Damour, Iyer, Will & Wiseman 1995; Blanchet Damour & Iyer 1995;

Blanchet, Iyer, Will & Wiseman 1996; Will & Wiseman 1996

Currently, it is available to 2.5PN order. ( Arun. et. al., 2004 )

Very recently, the time evolution for the orbital phase and
frequency to 3PN & hence to 3.5PN order was achieved. (
Blanchet, Damour, Esposito-Farèse, & Iyer, 2004 )
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Templates for eccentric binaries
Constructing PN accurate ‘ready to use’ search templates for
compact binaries moving in inspiralling eccentric orbits is more
involved & non-trivial.

We need to combine consistently three times scales, without treating
the radiation-reaction in an adiabatic manner.

The times scales linked to the orbital motion, precession of
periastron & radiation reaction.

We adapt the mathematical formulation, which resulted in an accurate
‘timing formula’ for binary pulsars, Damour 1983, 1985, to describe the
orbital dynamics. We also have PN accurate amplitude corrections to
h+ & h×

.
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Phasing: I
GW phasing: An accurate mathematical modeling of the continuous
time evolution of the gravitational wave polarization states h+ & h×.

h+ =
1

2

(

pi pj − qi qj

)

hTTij , h× =
1

2

(

pi qj + pj qi

)

hTTij

hTTij , the transverse-traceless (TT) part of the radiation field.
p & q are two orthogonal unit vectors in the plane of the sky.

hTTij & hence h×,+ are PN accurate quantities.
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Phasing: II
To the leading approximation h0

×(r, φ, ṙ, φ̇) =

−2GmηC
c4 R′

{(

Gm
r

+ r2 φ̇2 − ṙ2
)

sin 2φ− 2ṙ r φ̇ cos 2φ

}

where

C = cos i.

To construct ‘search templates’, we require PN accurate h+,× supplemented by
explicit expressions describing the temporal evolution of the PN accurate relative
motion, i.e. describing the explicit time dependences r(t), φ(t), ṙ(t), and φ̇(t).

The description for the temporal evolution of PN accurate relative motion will be coordinate

dependent. We want to describe the system almost analytically .

We employ an improved method of variation of constants to incorporate the

radiation reaction which leads to the above ‘phasing relations’.
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Phasing: III

Let the relative acceleration of the compact binary be
A = A0 +A

′.

A0 is the ‘conservative’ (integrable) part & A′ is the reactive
perturbative part.

The method first constructs the solution to the ‘unperturbed’
system, whose dynamics is governed by A0 & in this talk, the
conservative part is restricted to the second post-Newtonian
(2PN) order.

The solution to the binary dynamics, governed by A, is obtained by
varying the constants in the generic solution to the unperturbed system.
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Phasing: IV

For 2PN accurate dynamics, in the COM frame, there are 4 first integrals.
The 2PN accurate energy and angular momentum of the binary, denoted
by c1 & ci2:

c1 = E(x1,x2,v1,v2)|2PN CM ,

ci2 = Ji(x1,x2,v1,v2)|2PN CM ,

The vectorial structure of ci2, indicates that the unperturb ed
motion takes place in a plane.

This is true even when radiation reaction is present. Damour 1983 & we
can introduce polar coordinates in the plane of the orbit.
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Phasing: V
The functional form for the solution to the unperturbed (2PN accurate)
equations of motion

r = S(l; c1, c2) ; ṙ = n
∂S

∂l
(l; c1, c2) ,

φ = λ+W (l; c1, c2) ; φ̇ = (1 + k)n+ n
∂W

∂l
(l; c1, c2) ,

The basic angles l and λ are given by

l = n(t− t0) + cl , λ = (1 + k)n(t− t0) + cλ

S(l), W (l), ∂S
∂l
(l)&∂W

∂l
(l) are periodic in l with a period of 2π.

The mean motion n & periastron advance parameter k are
gauge invariant functions of c1 & c2 = |ci2|.

t0 is some initial instant and the constants cl & cλ, the corresponding
values for l & λ.
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Phasing: VI

The generalized quasi-Keplerian orbital representation gives fully 2PN parametric
solution to 2PN accurate EOM: Damour, Schäfer & Wex 1988, 1993

r = ar (1− er cosu) ,

l ≡ n (t− t0) = u− et sinu+
( g4t

c4

)

(v − u) +

(

f4t

c4

)

sin v ,

2π

Φ
(φ− φ0) = v +

(

f4φ

c4

)

sin 2v +
( g4φ

c4

)

sin 3v ,

where v = 2arctan

[(

1+eφ
1−eφ

)1/2

tan u
2

]

.

u, v are eccentric & true anomalies.
l ≡ n (t− t0) = u− et sinu+ .. gives 2PN accurate ‘Kepler Eqn’.

Rest of the quantities are PN accurate expressions in E & J .

The expressions for n & Φ are gauge invariant.
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Phasing: VII
We construct the solution of the perturbed system, defined by A in the
following way.

We keep the same the functional form for r, ṙ, φ & φ̇, as
functions of l & λ, but allow temporal variation in c1 = c1(t) &
c2 = c2(t).

Also, we have following definitions for l & λ

l ≡
∫ t

t0
ndt + cl(t) λ ≡

∫ t

t0
(1 + k)ndt + cλ(t).

Note evolving quantities cl(t), & cλ(t).

The four variables {c1, c2, cl, cλ} replace the original four
dynamical variables r, ṙ, φ & φ̇ and {cα} satisfies first order
evolution equations.
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Phasing: VIII

The explicit expressions for {dcα/dt} Damour 1985

dc1
dt

=
∂c1(x,v)

∂vi
A′

i
,

dc2
dt

=
∂c2(x,v)

∂vj
A′

j
,

dcl
dt

= −

(

∂S

∂l

)−1(
∂S

∂c1

dc1
dt

+
∂S

∂c2

dc2
dt

)

,

dcλ
dt

= −
∂W

∂l

dcl
dt
−
∂W

∂c1

dc1
dt
−
∂W

∂c2

dc2
dt

.

The evolution of Eqs. for cl & cλ follow from the fact that we
have same functional form for ṙ & φ̇ in unperturbed & perturbed
cases.
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Phasing: IX

It can be shown that to O(c−10),
dcα
dl
≡ Gα(l; ca);α = 1, 2, l, λ; a = 1, 2

Observe that the RHS of the above Eq. is a function of c1, c2
and the sole angle l & is a periodic function of l.

This periodicity along with that fact that Gα is ofO(c−5) allow us to
introduce a two-scale decomposition for cα(l).

cα(l) = c̄α(l) + c̃α(l)

c̄α(l) represents a slow secular drift.
c̃α(l) represents periodic fast oscillations.
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Phasing: X
The evolution Eqs. for c̄α & c̃α are

dc̄α
dl

= Ḡα(c̄a) ≡
1

2π

∫ 2π

0

dl G(l, ca)

dc̃α
dl

= G̃α(l) ≡ Gα(l; ca)− Ḡα(ca).

By definition, G̃α(l) is a periodic function with zero average over l.

We analytically integrate Eqs. for dc̃α
dl

by keeping the arguments ca,

which is justified as we only introduce already neglected O(c−10)
errors.

After the integration, ca replaced by the slowly drifting solution
of the averaged system, namely c̄l(l).
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By definition, G̃α(l) is a periodic function with zero average over l.

We analytically integrate Eqs. for dc̃α
dl

by keeping the arguments ca,

which is justified as we only introduce already neglected O(c−10)
errors.

After the integration, ca replaced by the slowly drifting solution of the
averaged system, namely c̄l(l).
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Phasing: XI

To explicitly perform ‘GW phasing’, we have solved evolution
Eqs. for {c̄α, c̃α} to the leading O(c−5) on the 2PN accurate
description for the dynamical variables r, ṙ, φ & φ̇ entering the
expressions for h× & h+ (Newtonian accurate in amplitude).

We have chosen to employ {n, et, cl, cλ} as time dependent variables to
describe the orbit.
n & et, associated with the 2PN accurate ‘Kepler Eqn.’ of generalized
quasi-Keplerian representation, are expressible in c1 & c2. Damour, Schäfer

& Wex, 1988,1993

It turns out that c̄l = c̄λ ≡ 0 to O(c−10). The expression for dn̄/dt
& dēt/dt are in agreement with results based on ‘balance
arguments’ Peters 1964.
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PICTORIAL PRESENTATION OF
THE RESULTS
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{n̄, ēt, ñ, ẽt} Vs # of orbital cycles.
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{c̄l, c̄λ, c̃l, c̃λ} Vs # of orbital cycles.
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Scaled time derivative of l & λ Vs # of orbital cycles.
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Scaled h+ Vs # of orbital cycles for η = 0.24
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Scaled h× Vs # of orbital cycles for η = 0.24
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Remarks on figures
In Figs., if we choose m = 2.8M¯, the evolution occurs for ∼ 8
sec, during which orbital frequency changes from 150 Hz to
∼ 217 Hz.
Inspiral relevant for LIGO

If we choose m = 105M¯, the figures are for a binary inspiral,
where orbital frequency increases from ∼ 4.2× 10−3 Hz to
∼ 6.2× 10−3 Hz in ∼ 2.7 days.
Inspiral relevant for LISA

We, for the first time, exhibit h+(t) and h×(t) with EXACTLY
2.5PN accurate orbital motion.
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The domain of validity: I
We have terminated the orbital evolution when j2 = 48 .

For a test particle, in Schwarzchild spacetime, bound orbits are
for E < 1 & j2 = 12 .

The 2PN accurate orbital parametrization, we employed,
assumes that the orbit is a slowly precessing ellipse & the
orbital motion starts deviating from that description as we
approach Last Stable Orbit (LSO).

Near LSO, the orbit of a test particle executes ‘zoom-whirl’ motion,
which contain a rapidly precessing quasi-circular motion. Glampedakis
& Kennefick 2003
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The domain of validity: II

To be ‘sufficiently’ away from such orbits, we have to set an upper limit
on the rate of periastron precession, de facto, eliminating the possibility
of whirl-zoom orbits.

The restriction j2 = 48 does that.

To obtain the restriction j2 = 48, we employed an exact & compact
expression for periaston advance for a test particle in Schwarzschild
spacetime, Damour & Schäfer, 1988

.

Since the EOB representation, qualitatively, indicates that the orbital
motion of a comparable mass binary is rather close to the test mass
case, j2 = 48 is quite conservative limit.
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What we have done

h+,×(rharm, φharm, ṙharm, φ̇harm)
⇓

h+,×(r
ADM, φADM, ṙADM, φ̇ADM)

⇓

h+,×(n, et, l, λ)

⇓

h+,×(n̄ + ñ, ēt + ẽt, l̄ + l̃, λ̄ + λ̃)
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Further plans

Since the orbit of the binary was treated to be an inspiralling,
slowly precessing ellipse, we couldn’t approach LSO. Using
EOB approach, we should be able to explore ‘zoom-whirl’ orbits
& associated h+,×.

Today, we have the necessary inputs to do the complete
‘phasing’ at 3.5PN order in ‘harmonic’ coordinates.
R-M. Memmesheimer, A.G & G. Schäfer .

With Christian Königsdörffer, ‘spin effects’ are being explored.

Efforts are underway to address data analysis issues using our
h+,×.
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