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Heterodyne Mach-Zehnder interferometer
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It has constant sensitivity over a range of > ±100µm. The heterodyne frequency fhet is a few kHz

(1.6 kHz in the EM).
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Interferometer budget
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Note the new interpretation. As compared to some earlier versions, nothing has changed for the
interferometer budget, which is, however, now a factor of nearly 20 below the mission goal.

The frequency dependence of all interferometer-related budgets is

y(f) = y(30mHz) ·

√√√√1 +

(
3mHz

f

)4

,

and all budgets in the following are given at 30mHz (such as 9 pm/
√

Hz for the interferometer).
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Fiber
Inputs

x1−x2

x1

Reference

Frequency

4 interferometers:

x1 − x2 provides the main measurement: the distance

between the two test masses and their differential

alignment.

x1 provides as auxiliary measurement the distance be-

tween one test mass and the optical bench and the

alignment of that test mass.

Reference provides the reference phase for

x1 − x2 and x1.

Frequency measures laser frequency fluctuations with

intentionally unequal pathlengths.
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x1 − x2
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with an extra pathlength of 356.7mm in the reference fiber, the pathlength difference is 0.000 mm.
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x1
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with an extra pathlength of 356.7mm in the reference fiber, the pathlength difference is 0.02 mm.
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Reference
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with an extra pathlength of 356.7mm in the reference fiber, the pathlength difference is 0.016mm.
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Frequency
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with an extra pathlength of 356.7mm in the reference fiber, the pathlength difference is −380mm.
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Optical bench manufacturing

The OB was manufactured by RAL from a Zerodur baseplate and fused silica optical components,

using hydroxycatalysis bonding from U Glasgow and the optical design from AEI.
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Recovery from accident

A handling mistake caused 4 components to break at a late assembly stage. They could be repaired

with interface plates (‘bridges’).
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Remaining assembly problems

One bond is incomplete:

Refinement of the bonding procedure is needed.

The alignment procedure of the fiber injectors needs some refinement (≈ 100µrad vertical error).

More components need to be aligned with the ‘jig’ (horizontal template accuracy insufficient for long

lever arms).
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Laser source

The laser (by Tesat) is already space qualified and delivers 25 mW at the end of an optical fiber.

It will be included in a larger box together with the Acousto optical modulators and associated

electronics.
16



AOM Prototype (Contraves)

needs further development.
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Functional overview
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thermometers

Pre−amp
antialiasing
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Laser power stabilization
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Stabilization via split feedback to Laser pump module (common mode)
and AOM RF power (differential mode, BW>50 kHz).

20



AOM driver

A laboratory prototype of the AOM driver was built and characterized. It consists of two independent

TCVCXO’s, which are frequency-locked by a PLL to give a constant difference frequency (e.g.

1.6 kHz).

TCVCXO
80 MHz − 250 Hz
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Both the difference frequency (≈ 1.6kHz) and
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The phase noise of each oscillator is

< 10−6 rad/
√

Hz at 1 kHz.
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DBM = double balanced mixer (used as attenuator)
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The RF amplitude of each oscillator is stabilized to ≈ 10−8 /
√

Hz at 1 kHz and has a fast input

(BW > 100kHz) to compensate light power fluctuations that are measured at the fiber end.
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Laser Frequency noise

Laser frequency fluctuations δν = δω/(2π) cause spurious phase fluctuations δϕ via a pathlength

difference ∆l between the arms.

Conversion factor δω [rad/s] −→ δϕ :

τ = ∆l/c, the differential time delay.

Budget: δϕ < 6µrad/
√

Hz

between 3 mHz and 30mHz

Frequency stability requirement:
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Frequency stabilization

We use the extra interferometer with ∆L = 38cm as sensor with sufficiently low noise. Two options

are:

• Use that signal in a feedback loop to actively stabilize the laser (the baseline):

Required loop gain : ≈ 100 at 30mHz.

With a 1/f simple integrator as loop filter we need unity gain frequency > 3Hz.

Allowing an extra phase delay of 45◦ in the loop gain at 3 Hz, the permissible processing time

delay is 40ms (achievable).

Small complication with DC feedback: laser is forced to follow drifts of auxiliary interferometer

(solvable).

• Do not stabilize the laser but use that signal to correct the main output signals for the

frequency flucuations thus measured (fallback option). The actual pathlength differences ∆l

must be known to relatively high precision: δl = 0.1mm and δL = 4mm. Manufacturing to such

accuracy is difficult, but measurement during operation is possible.
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Phasemeter using SBDFT (Single-Bin Discrete Fourier Transform)

Inputs from one quadrant diode: xi = UA(ti), same for UB(t), UC(t), UD(t).
First step: SBDFT achieves data reduction by a factor of ≈ 100:

DC components: DCA,DCB,DCC,DCD (real) : DCA =
n−1∑
i=0

xi,

fhet components: FA,FB,FC,FD : <(FA) =
n−1∑
i=0

xi · ci, =(FA) =
n−1∑
i=0

xi · si.

The constants si and ci are pre-computed: ci = cos
(
2π i k

n

)
, si = sin

(
2π i k

n

)
.

At the moment, our prototype uses PC software.

Prototypes close to the LTP phasemeter

(using FPGAs for this step) are under construction

in Hannover and Birmingham:

serout
serclk

stateclk
adclk

CONTROL

SERIAL

serout
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CONTROL

SERIAL

� ��

� ��
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�

ADC
clock

data
busy adbusy

addata

DATA

SIN/COS
Table

FPGA

ADC
clock
data
busy adbusy

addata

DATA

SIN/COS
Table

FPGA

Central Controller

adclk

stateclk

16*serin

16*serclk

master clock

serout

16 channels per phasemeter

To DMU/PC

(only 2 are drawn)
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Phasemeter EM/FM concept

– for redundancy, there are 2 separate phasemeters, each processing 4 photodiodes (one from each

interferometer) = 16 channels.

– Data rate from ADC: 100kHz× 16bit× 16channels = 3.2MByte/sec.

– Early concepts needed high-speed DSP for DFT.

– New concept: Initial data processing stage (SBDFT) is done in hardware (FPGA).

Reduced data rate 100Hz× 20bytes× 16channels = 32kByte/sec, i.e. data reduction by factor 100.

FPGA also handles ADC timing and control.

– DSP is still needed for final processing stages, but with 1/100 of the data rate and no critical

timing any more.

– FPGAs exist in rad-tolerant and rad-hard versions, e.g. by Actel.

– Prototype FPGA phasemeters are under construction in Birmingham and Hannover.

26



Further processing in DMU

Longitudinal Signal:

F(1)
Σ = FA + FB + FC + FD the total fhet amplitude on the first quadrant diode, and

F(2)
Σ for the second (reference) quadrant diode equivalently.

ϕlong = arg(F(1)
Σ )− arg(F(2)

Σ ) + n · 2π, (integer n from phasetracking algorithm).

Alignment signals, independently on each diode:

FLeft = FA + FD: amplitude in left half, DCLeft = DCA + DCD: average in left half,

FRight, FUpper, FLower, DCRight, DCUpper, DCLower equivalently.

The DC (center of gravity) signals:

∆x =
DCLeft −DCRight

DCΣ
, ∆y =

DCUpper −DCLower

DCΣ
,

The DWS (differential wavefront sensing) signals:

Φx = arg

(
FLeft

FRight

)
, Φy = arg

(
FUpper

FLower

)
,

Alignment signals are obtained from each quadrant diode individually (no reference needed)

−→ Rejection of several common mode noise sources.
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Optical windows

There will be 4 transmissions through an optical window of approx. 5mm thickness in the main x1−x2

measurement path:
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Pathlength effects

Four major disturbing effects on the optical pathlength are expected:

Thermal variation of optical pathlength.

Stress-induced change in refractive index.

mechanical motion of the window in z-direction.

mechanical tilt fluctuations of the window.

The sum of all noise contributions of one window (in double pass) is counted as one interferometer

noise source and allocated a bufget of 1 pm/
√

Hz. Hence the window effects contribute no more than

1 pm/
√

Hz in the x1 measurement and no more than 2 pm/
√

Hz in the x1 − x2 measurement. Each

effect is allocated 0.33 pm/
√

Hz (for one window double pass).
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Thermal variation of optical pathlength:

∆s = ∆T × L×
(
dn
dT + (n− 1)α

)
.

dn/dT + (n− 1)α is ≈ 5ppm/K for most glasses (e.g. BK7).

Athermal glasses (e.g. Ohara S-PHM52, Schott N-FK51 and Schott N-FK56) have 0.5 . . .1ppm/K.

The Schott glasses have a high α ≈ 15ppm/K, not well matched to Ti.

The best candidate that we identifed so far is Ohara S-PHM52.

At 1064 nm, dn/dT + (n− 1)α = 0.59ppm/K.

The linear thermal expansion coefficient α is 10.1 ppm/K, well matched to Ti.

All these athermal glasses are difficult to polish and very brittle, which may limit the mounting

options. With glueing, care must be taken to avoid high static stresses that might cause the glass to

break in thermal cycling.
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From δ̃T = δ̃s

L×
(

dn
dT +(n−1)α

),
a pathlength error of δ̃s = 0.33pm/

√
Hz

and L = 12mm,

the required thermal stability at the window is:

δ̃T < 4 · 10−5 K/
√

Hz

10-5

10-4

10-3

10-2

10-4 10-3 10-2 0.1 1

L
SD

 (K
/√

H
z)

Frequency (Hz)

Thermometer noise

AD-590: out-of-loop
PT-10.000: out-of-loop

NTC: out-of-loop
req.

Ohara S-PHM52

Linear thermal expansion α = 10.1ppm/K.

at 1064 nm:

n = 1.60645,

dn/dT + (n− 1)α = 0.589ppm/K.
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Stress-induced change in refractive index:

While in some materials the stress-induced birefringence can be made small, we have here the

absolute variation in refractive index, which is never small. The relevant material constant is:

“Photoelastic constant” β = 1.0nm/cm/105Pa.

For a pathlength error of 0.33pm/
√

Hz and L = 12mm, the required stability of mechanical stress in

the window is:

δ̃σ < 30Pa/
√

Hz.

We have no knowledge of the real stress fluctuation.

This error might be big.

Mounting of the optical window will be critical (In seal? Au-Sn seal?).

Measuring the thermally induced pathlength fluctuation is essential.
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Mechanical motion:

If there is a deviation γ from parallelism and the window moves in z direction by ∆z this yields a

pathlength error (double-pass):

∆s = 2γ(n− 1)∆z.

For γ = 30′′, n− 1 = 0.6 and a pathlength error of 0.33pm/
√

Hz one gets

δ̃z < 2nm/
√

Hz.

If this is difficult, the obvious remedy is to improve the parallelism.
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Mechanical tilt fluctuations:

α

d

d

β
α− β

l

∆x

a

l =
d

cosβ
,

a = l cos(α− β),

sinα

sinβ
= n ,

∆s = nl− a

∆s = d

√cos 2α + 2n2 − 1

2
− cosα


With α = 2.5◦, d = 6mm, n = 1.6:

d(∆s)

dα
= 0.98 · 10−4 ≈ 10−4m/rad

For a pathlength error of 0.16pm/
√

Hz (0.33 pm/2 because of double-pass) one gets

δ̃α < 1.6nrad/
√

Hz.

If too difficult, α might be reduced at the expense of stray light problems.
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Functional, environmental and performance tests

The EM was tested during March and April, 2004 at TNO/TPD, Delft. The tests included:

• Functional tests before and after each other test,

• Thermal vacuum test:
several cycles 0. . . 40 ◦C,

• Vibrational test (with dummy masses):
8 grms sine and random,
25 g at the struts.

• Performance tests:

– Full stroke test: each mirror moved by ±100µm,

– Noise test: mirrors not actuated

– Tilt test: each mirror tilted by ±1000µrad,

All tests were successful!
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EM Test results: high velocity full stroke test (2.9 samples/cycle)
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EM Test results: Noise
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EM Test results: Contrast

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

co
nt

ra
st

time[sec]

LPF OB performance: Contrast
TNO/AEI 2004/03/19

contrast Ref
contrast x1-x2

38



EM Test results: Noise sources 1

At frequencies < 3mHz, real motion of the test mirrors is dominant:
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EM Test results: Noise sources 2

An attempt to glue the Zerodur mirrors to the Zerodur baseplate failed: Curing of the glue caused

≈ 200µrad misalignment and a contrast drop to < 0.5. This is mainly a testing problem.
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EM Test results: Noise sources 3
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Fluctuations of the fibers’ Optical Pathlength Difference (OPD, ∆F ) should ideally completely cancel,

but in reality some error remains.
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The measured pathlength x1− x2 signal has an erroneous component of ≈ mrad magnitude which is

quasi-periodic with ∆F .
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Unless the origin of the noise will be understood, a remedy is to actively stabilize ∆F . This was done

using an analog phasemeter, analog servo and long-range PZT at TNO.

Further investigations are under way in Hannover and Glasgow.
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Alignment measurement with quadrant photodiodes

3 ways to use a quadrant diode:

A B

C D

• Σ = A + B + C + D is used as before for the longitudinal readout.

• The DC signals ∆y = A + B − C −D and ∆x = A + C −B −D measure the

average lateral displacement of both beams.

• Differential wavefront sensing measures the angle between interfering wavefronts:

Phase
meter avg pathlength change

testmass longitudinal

Phase
meter wavefront angle

testmass tiltdiff

split
photodiode
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EM Test results: DC alignment signals

The calibration factor from test mass tilt angle α to ∆x is (with several idealizations) given by
d(∆x)/dα = 2

√
2/π L/w, where L ≈ 25 . . .50cm is the lever arm from test mass to photodiode, and

w ≈ 0.5 . . .1mm the beam radius at the photodiode.

Rot. TM1 Rot. TM2 units

x1 ifo predicted (numerical) 759 0 1/rad
x1 ifo measured (x) 357 0 1/rad
x1 ifo measured (y) 310 0 1/rad

x1 − x2 ifo predicted (numerical) 1147 304 1/rad
x1 − x2 ifo measured (x) 537 180 1/rad
x1 − x2 ifo measured (y) 468 184 1/rad

• conversion factor depends on beam parameters and beam power ratio (unbalanced during this
measurement).

• DC alignment signals have higher noise than DWS signals.

• DC alignment signals are used for rough alignment of test mass when DWS contrast is insufficient.
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EM Test results: DC alignment signals
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EM Test results: Differential wavefront sensing (DWS)

The conversion factor of test-mass angle α to (differential) phase readout ϕ is analytically:

ϕ/α = 2
√

2πw(z)/λ ≈ 5000 rad/rad.

Rot. TM1 Rot. TM2 units

x1 ifo predicted (numerical) 5337 0 rad/rad
x1 ifo measured (x) 5441 0 rad/rad
x1 ifo measured (y) 5167 0 rad/rad

x1 − x2 ifo predicted (numerical) 4963 5994 rad/rad
x1 − x2 ifo measured (x) 5365 7263 rad/rad
x1 − x2 ifo measured (y) 5072 6940 rad/rad

• conversion factor depends on beam parameters; calibration is necessary.

• Better than the angular readout capability of the capacitive sensors; will be used to stabilize the
alignment of the test masses.

• DWS works only when there are fringes (test mass absolute alignment better than 300 µrad).
Otherwise, DC alignment signals are used for rough alignment of test mass.
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EM Test results: Differential wavefront sensing (DWS)
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Summary

• interferometry and phase measurement for LTP work as predicted.

• some minor refinements are needed in the construction procedure.

• environmental and performance testing was successful.

• further investigations will concentrate on the ‘small vector’ noise.
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