Phase locking for LISA

Christian Killow, David Robertson, Harry Ward, Jim Hough

Institute for Gravitational Research
University of Glasgow
Talk outline

• The need for weak light phase locking in LISA
• An arrangement for demonstrating weak light phase locking in the laboratory
• Subsystems of the experiment
• Current status
LISA light levels

- Each spacecraft houses two phase locked lasers which each emit beams to the other two spacecraft.
- The beams start off collimated with diameter 40cm.
- Upon arrival at the receiving spacecraft \((5 \times 10^9 \text{m})\) away the beam has expanded to diameter of order 20km, resulting in only a small amount of the transmitted beam being detected.
- LISA light levels will be of order 1W transmitted and \(~300\text{pW}\) received.
 - *This attenuation means that the receiving spacecraft cannot simply reflect the light.*
Weak light phase measurement

- Doppler shifts in LISA can change the frequency of the beatnote between two lasers by up to 15MHz
- For LISA to operate we have to be able to measure the phase of the received light until we are limited only by shot noise

Figure 1: Simplified LISA layout for two spacecraft

5 x 10^9 m

~1W
~300pW
~300pW
~1W
Situation at each spacecraft

- One possible mode of operation is to hard lock the ‘reflected’ light to the incoming weak beam

- Phase locking would demonstrate that the phase has been measured to required accuracy

Figure 2: Single spacecraft
Lab demonstration (1)

- We aim to demonstrate phase locking at LISA power levels in a lab experiment

Figure 3: Phase locking to weak light
Lab demonstration (2)

- High power interference gives us phase measurement where shot noise is a factor of ~1000 lower

- All oscillators are phase locked together

Figure 4: The use of a PMS to measure out of loop performance
Lab demonstration (3)

- An output of PMS can be used for LF feedback
- This could help avoid mixer flicker noise

Figure 5: DAC output of PMS used for LF lock
Preliminary investigations

- The experiment must be built up from components that are stable enough when combined to reach the overall goal
- A series of sequential experiments have been conducted to ensure this:
 - Stable interferometer and phase measurement system demonstrated
 - Phase locked oscillators through comparators into phase meter
 - Phase locked oscillators via mixers and comparators into phase meter
 - Optical signals (via front ends) locked to oscillators, through comparators and into phase meter
Optical bench stability

- Well characterised optical bench
- Intrinsic stability of system (including PMS) good enough to realise goal

- Slight excess noise in the 1.5 to 5mHz region is due to environmental temperature fluctuations
- Servos operating to stabilise laser frequency and differential length fluctuations in the fibre feed paths
Oscillator test

- Initial test: that phase locked oscillators and PMS noise floor is sufficiently low
- PMS channel 5 is the difference between phase in channels 1 and 4

- Red curve shows LPF interferometry target
Mixer test

- Now introduce mixers to the chain
- One of the comparators is noisy, showing up as common mode noise

- Satisfactory noise floor
Optical signals

- The optical signals are generated by two NPRO Nd:YAG lasers

- The lasers are fibre coupled onto an ultra-stable optical bench in an evacuated tank

- The beams are combined at three interference points, which are directed onto the front ends (photodiodes with preamplifiers) outside the tank
Attenuation

- Optical bench originally designed to be operated with equal power in each arm
- Power in one arm of one interference attenuated
- Unwanted light is reflected out of the optical system by four mirrors angled to the beam
- Attenuation of $\sim 6 \times 10^6$ is achieved, giving weak light power of $\sim 320\,\text{pW}$ from $\sim 2\,\text{mW}$
Current status

- Ultra-stable interferometer verified
- Laser bench complete
- Phase locking demonstrated with offset frequencies ~3-30MHz
- Light attenuation in place

Work to be done:
- Lock on weak light
- Frequency noise stabilisation
- Digital feedback for LF lock