



## **The Stanford Gravitational Reference Sensor**

# S. Buchman, B. Allard, G. Allen, R. Byer, W. Davis, D. DeBra,D. Gill, J. Hanson, G.M. Keiser, D. Lauben, I. Mukhar, N. A.Robertson, B. Shelef, K. Sun, S. Williams

W.W.Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085, USA





#### **Mission Drag-Free Requirements**





## Heritage

- Inertial Sensor based on Stanford experience: TRIAD (Stanford/APL, 1972) GP-B (Stanford, 2004)
- Earlier sensors used spherical test masses Fewer degrees of freedom to control
- Proposed LISA sensor uses a faceted test mass Control position of laser beam on test mass Allows validation at picometer level
- Test mass is 4-cm cube of Au/Pt alloy Dense, to reduce motion in response to forces Low magnetic susceptibility, used on TRIAD
- Position sensing and charge management design derived from GP-B



#### TRIAD sensor- 1972





#### GP-B Launch: April 20, 2004



ST-7











4

#### **GP-B** Technologies

30 years of GRS technology development for TRIAD and GP-B are a very significant stepping stone. GP-B has showed on-orbit validation of key GRS technologies.

- Drag-free Control
- Electrostatic Positioning System
- Charge Control System

- $10^{-10} \text{ m/s}^2 \text{ level}$
- 0.45 nm rms position noise
- < 5pC control



#### **Drag Free Performance**



## Positioning performance

Drag-free: 5.0 nm RMS

Backup drag-free: 0.6 nm RMS

Normal suspension: 6 nm peak from gravity gradient.



#### **GP-B** Gyroscope Suspension

Gyro #4 Digital Levitation





#### **Position Measurement Performance**



Representative gyro position trace showing non dragfree gravity gradient effects in Science Mission Mode

#### Measurement noise 0.45 nm rms

Noise floor



#### **GP-B Charge Management**







#### **GP-B Charge Management**



#### **GRS** Overview

#### **Salient Features**

- Test mass noise <  $2.8 \times 10^{-14}$  m/s<sup>2</sup>/ $\sqrt{Hz}$ , 1 mHz to 30 mHz
- Position measurement to < 3 nm/ $\sqrt{Hz}$ , 1 mHz to 30 mHz
- Accelerometer mode
- Validation of thruster performance
- Force noise diagnostics
- Validation of drag free environment models

#### **Gravitational Reference Sensor Technologies**

- Test mass is 4-cm cube of Au coated Au/Pt alloy
- Beryllia housing with plated Au electrodes
- Vacuum system supporting 10<sup>-5</sup> Pa EOL
- Caging system capable of supporting launch loads and re-caging
- Capacitive sensing system providing  $< 3 \text{ nm}/\sqrt{\text{Hz}}$  measurement
- Electrostatic forcing system providing 2x10<sup>-7</sup> m/s<sup>2</sup> peak acceleration





#### **BeO Housing**





#### **Test Mass Magnetic Susceptibility**



Engelhard 73% material is outside current GRS requirement (green line), 2% impact to noise margin.



## **Precision Reference Housing**

- Electrode isolation groove BeO sample end-milled at Axsys.
- Stepped Precision Alignment BeO Walls.
- Bulk Precision Alignment Alumina Reference Walls.
- Precision tooling sphere demonstrated.
- 7 EM BeO housing walls received 3 weeks early.
- Alignment performance verified in test.
- Laser milling demonstrated.
- All 72 flight BeO blanks delivered by Brush Wellman on schedule.







## **Kelvin Probe Measurements at GSFC: Contact Potential Difference Variations**



## **Caging Design**

- Test mass constrained by 6 travel-limited push actuators.
- Travel overlap = 0.1 mm.
- Static loads taken by 3 pads + pneumatic pressure.
- Dynamic loads taken by all pads and actuator stiffness.
- Pads pivot to self-align to TM face.
- Actuators powered by central pressure supply
- Plungers normally retracted, receded 0.1mm into housing wall



- Pads mimic wall properties: BeO, gold and DLC coatings.
- Pads are self aligning
- Pad diameter is 5mm
- Return spring provides uncaging force > 10N



plunger unit: sits on top of pad unit

July 15, 2004

**ST-7** 



#### **Analog Electronics Testing**

Eight RFB 1.6 boards populated and under test

- No PCB defects
- All analog circuits functioning as expected
- Firmware complete and digital interface tested





RFBv1.6 differential output driver testing shows phase temperature coefficient performance equivalent to the best commercial balanced drivers (e.g. AD8131).



#### **Noise Budget**

| Source                                  | Requirement<br>(10 <sup>-15</sup> m·s <sup>-2</sup> ·Hz <sup>-½</sup> ) | CBE<br>(10 <sup>-15</sup> m·s <sup>-2</sup> ·Hz <sup>-½</sup> ) |
|-----------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|
| Coupled Spacecraft Motion (Sensitive)   | 14                                                                      | 14                                                              |
| Coupled Spacecraft Motion (Transverse)  | 3.8                                                                     | 3.8                                                             |
| Coupled Spacecraft Motion (Orientation) | 4.5                                                                     | 4.5                                                             |
| ES Suspension – Backaction              | 10                                                                      | 10                                                              |
| Dielectric Effect                       | 2.2                                                                     | 2.2                                                             |
| Test Mass Charge Variation              | 10                                                                      | 10                                                              |
| Lorentz Force                           | 1.0                                                                     | 1.0                                                             |
| Magnetic Field Interactions             | 2.7                                                                     | 5.4                                                             |
| Housing Temperature Gradient            | 4.0                                                                     | 4.0                                                             |
| Residual Gas Pressure Damping           | 4.5                                                                     | 4.5                                                             |
| Interferometer Laser Pressure Variation | 0.5                                                                     | 2.6                                                             |
| Time Varying Mass Attraction            | 10                                                                      | 10                                                              |
| Low Frequency Suspension Force          | 4.5                                                                     | 4.5                                                             |
| Control Force Cross-talk                | 2.3                                                                     | 2.3                                                             |
| Total Acceleration Noise                | 24.8                                                                    | 25.2                                                            |
| GRS System Margin                       | 13.0                                                                    | 12.1                                                            |
| Level 3 Requirement                     | 28                                                                      | 28                                                              |

CBE = current best estimate



ST-7 July 15, 2004

#### **GRS Performance Simulation Results**



#### **Advanced Concepts - Stanford**

- Single proof mass (PM) per S/C
- Non constraint GRS
- Multiple stage disturbance isolation
- Gravitational sensor separation from S/C Interferometry
  - Measure PM position in housing
  - Use housing for interferometry
- Fiber utilization
- Reflective Optics

GRS with double sided grating for PM and interferometer reference





#### **GRS** Path to Flight

April, 2003 **GRS** Established Technology Readiness Level 5 May, 2004 **GRS** Subsystem Critical Design Reviews **DRS** Critical Design Review August, 2004 May, 2005 GRS Delivered to JPL January, 2006 DRS Delivered to ESA LAUNCH May, 2008

