

Self-gravity modeling for LISA

5th International LISA Symposium

Stephen M. Merkowitz NASA/GSFC

William Haile Swales Aerospace

July 15, 2004

Contributions from: S. Conkey, W. Kelly II, and Hume Peabody (Swales Aerospace)

3**0.0**0

- Mission level requirements:
 - Total Static Self-Gravity $\leq 5 \times 10^{-10}$ m/s².
 - Equivalent to acceleration from 1 kg mass 36 cm away.
 - Acceleration of Mars on you is ~100x10⁻¹⁰ m/s² (20 x LISA budget).
 - Total Static Self-Gravity Gradient $\leq 3 \times 10^{-8} \text{ s}^{-2}$.
 - Equivalent to gradient from 1 kg mass 16 cm away.
- Self-gravity analysis is a critical part of LISA Integrated Modeling.
- STOPG analysis used to analytically determine spacecraft distortions due to structural, thermal, and release of 1g loads.
 - Based on current practices used in integrated Structural, Thermal, OPtical (STOP) analysis
 - Addition of self-Gravity analysis leads to STOPG
- Self-Gravity tools accept distorted and undistorted cases.
- Outputs forces, moments, and their gradients on the proof masses.

- Two independent self-gravity tools developed
 - Fortran 77 version (Swales developed)
 - Matlab version
- Solution Point mass approximation used
- 🌯 Inputs
 - FEM mass matrix and rigid body vectors
 - Spacecraft deformed node locations
- 🌯 Outputs
 - Forces and moments on a proof mass (6 terms each)
 - Gradients on forces and moments (36 terms each)
 - Numerous checks on the accuracy of the inputs and calculations.
- Stools accept distorted and undistorted cases
 - Thermal distortions
 - One-g release distortions

- Stress Two independent tools developed and cross-checked
- Serified independently using analytically solvable problems
- 🌭 Two examples:

Two cubes in proximity

Circular ring with proof mass

- Conflicting mesh requirements:
 - Coarse mesh size for thermal (except in regions of high gradient)
 - Fine mesh size for structural analysis of deformed shapes
 - Very fine mesh size for self-gravity near the proof masses

Self gravity guidelines for the FEM mesh size were developed:

	Maximum D/R for Grid Size	Maximum L/C for point mass approximation
Forces	0.9	0.3
Moments	0.5	0.1
Force gradients	0.4	0.2
Moment gradients	0.25	0.15

D = FEM gird spacing, the mesh size

- R = Distance from the grid point to the surface of the proof mass
- L = Largest dimension of the solid body
- C = Distance from the center of the body to the surface of the proof mass
- Tool estimates errors caused by D/R ratios.

A separate tool is used to remesh structure close to proof mass

Subdivision	# Grid Points	Mass (kg)
+Y housings with proof mass	2601	5.546
+Y optical block with mount and proof mass vacuum cover	4851	7.415
+Y telescope with primary mirror, mounts and sec. mirror assy.	1093	4.915
+Y OB cylindrical thermal shields, rings and flexures	1577	8.154
-Y housing with proof mass	2601	5.546
-Y optical block with mount and vacuum cover	4851	7.416
-Y telescope with primary mirror, mounts and sec. mirror assy.	1093	4.915
-Y OB cylindrical thermal shields rings and flexures	1577	8.157
Y tube with sun shade	1486	24.163
S/C structure top plate, bottom plate, bulkheads and support tubes	11842	93.037
S/C thermal shield, solar array and radiator panels	7832	36.490
E-boxes with their isolators	1922	68.243
Two HGAs	2	3.000
Total	43336	276.998

Self-Gravity Results

Revond Einstein: From the Big Bang to Black Holes

	For the +Y Test Mass	For the -Y Test Mass
Ax $(m/s^2 \times 10^{-10}) =$	-26.8925	-20.6873
Ay $(m/s^2 \times 10^{-10}) =$	-58.7772	58.1310
Az $(m/s^2 \times 10^{-10}) =$	-40.7371	-40.8112
$\alpha \xi (\rho \alpha \delta \sigma^2 \xi 10^{-10}) =$	1.2278 Requirer	ment = 5 1.2652
$\alpha \psi (\rho \alpha \delta \sigma^2 \xi 10^{-10}) =$	0.0610	0.0486
$\alpha\zeta (\rho\sigma\delta/\sigma^2 \xi 10^{-10}) =$	0.1161	0.0205

		Requirement = 300						
	/δξ (u)	/δψ(μ)	/δζ(μ)	(μ) 3δ	/δψ(μ)	/δζ(μ)		
$\delta A \xi (1/\sigma^2 \xi 10^{40}) =$	-1264.32	85.39	-25.74	-1258.04	-104.25	-24.69		
$\delta A \psi (1/\sigma^2 \xi 10^{-10}) =$	85.39	1669.91	7.20	-104.25	1666.05	-26.13		
$\delta A \zeta (1/\sigma^2 \xi 10^{-10}) =$	-25.74	7.19	-405.60	-24.69	-26.13	-408.01		
$\delta \alpha \xi (\rho b^2 / \mu \xi 10^{-10}) =$	1.81	1137.84	49.92	1.42	1138.13	50.69		
$\delta \alpha \psi (\rho \sigma^2 / \mu \xi 10^{-10}) =$	-300.77	-0.70	-9.01	-300.88	-0.45	-6.62		
$\delta \alpha \zeta (\rho \sigma^2 / \mu \xi 10^{-10}) =$	-1.73	-8.19	-1.11	-0.16	-4.63	-0.97		

	/δθξ (ρ)	/δθψ(ρ)	/δθζ (ρ)	/δθξ (ρ)	/δθψ(ρ)	<u>/δθζ(ρ)</u>
$\delta A\xi (\mu/\sigma^2/\rho\xi 10^{-10}) =$	0.00	40.66	-58.78	0.00	40.73	58.13
$\delta A \psi (\mu / \sigma^2 / \rho \xi 10^{-10}) =$	-40.43	0.00	26.89	-40.51	0.00	20.69
$\delta A \zeta(\mu/\sigma^2/\rho\xi 10^{-10}) =$	58.79	-26.89	0.00	-58.12	-20.69	0.00
$\delta \alpha \xi \ (1/\sigma^2 \ \xi \ 10^{-40}) =$	1812.3	-0.171	-0.118	1812.23	-0.011	-0.019
$\delta \alpha \psi (1/\sigma^2 \xi 10^{-40}) =$	-0.055	335.90	-1.260	0.009	335.90	-1.264
$\delta \alpha \zeta (1/\sigma^2 \xi 10^{-10}) =$	-0.178	-0.032	297.85	-0.068	0.001	297.84

Self-gravity - 7/15/04

Re	<u>esults on +Y pro</u>	<u>of mass in loc</u>	<u>al proof mass c</u>	coordinates		
Source	Ax	Ay	Az	dAx/dx	dAy/dy	dAz/dz
	(m/s^2)	(m/s^2)	(m/s^2)	$(1/s^2)$	$(1/s^2)$	$(1/s^2)$
	$x 10^{-10}$)	$\mathbf{x} 10^{-10}$	$x 10^{-10}$)	$x 10^{-10}$)	$x 10^{-10}$)	$x 10^{-10}$)
	,	,	,	,	,	,
+ GRS housing	-0.43	-0.03	-0.39	-2274.9	1130.3	1144.7
+ Optical block	0.18	0.53	-43.24	600.8	676.8	-1277.5
+ Telescope	33.32	-0.25	-2.72	196.1	-105.1	-90.9
+ Thermal shield	-35.44	-0.30	-0.31	225.8	-145.7	-80.1
ĐProof mass	-1.26	-2.19	0.00	-1.1	5.4	-4.3
ĐGRS housing	-4.24	-7.25	0.01	-3.2	17.7	-14.5
ĐOptical block	-7.68	-12.53	-0.26	-3.3	29.7	-26.3
ÐTelescope	-0.78	-5.19	-0.17	-5.5	12.6	-7.1
ĐThermal shield	-12.94	-13.01	-0.44	19.8	14.9	-34.8
Y-tube	4.65	-7.67	-3.45	14.9	-0.4	-14.5
S/C structure	-7.39	-4.77	-3.52	-37.0	-7.2	44.2
S/C thermal	-1.02	-0.88	14.82	-4.8	-4.6	9.3
Electronic boxes	6.17	-5.74	-1.49	9.0	44.3	-53.3
High Gain Antennas	0.23	0.40	0.44	-0.4	1.1	-0.7

X-axis is telescope line-of-sight

QuickTime^a and a Video decompressor are needed to see this picture.

Telescope Articulation

Revond Finstein: From the Rig Bang to Black Holes

- Analysis completed for change in selfgravity due to telescope articulation.
- Nine models produced with the telescope articulation angle incremented

QuickTime^a and a Video decompressor are needed to see this picture.

- Expected articulation is ±0.5° _
- Linear change : -1.03x10⁻¹⁰ m/s²/degree _ for sensitive axis (x)

Change In Tr	<u>anslational</u> .	<u>Acc eleratio</u>	ons and Gra	adients on t	<u>he +Y Proot</u>	Mass
Articulation	ΔΑξ	ΔΑψ	ΔΑζ	ΔδΑξ/δξ	ΔδΑψδψ	ΔδΑζ/δζ
Angle	(μ /σ ²	(μ /σ ²	(μ / σ^2)	$(1/\sigma^2)$	(1/ o ²	$(1/\sigma^2)$
θz	$\xi 10^{-10})$	ξ10 ⁻¹⁰)	ξ10 ⁻¹⁰)	ξ10 ⁻¹⁰)	ξ10 ⁻¹⁰)	$\xi 10^{-10}$)
$+0.8^{0}$	-0.824	0.351	2ε-6	2.32	-2.32	2ε–4
$+0.6^{0}$	-0.619	0.262	2ε-6	1.74	-1.74	$1\varepsilon-4$
$+0.4^{0}$	-0.413	0.174	1ε-6	1.15	-1.15	7ε-5
$+0.2^{0}$	-0.207	0.087	$4\epsilon-7$	0.58	-0.58	4ε–5
0	0	0	0	0	0	0
-0.2^{0}	0.207	-0.086	$-5\varepsilon-7$	-0.58	0.57	-4€-5
-0.4^{0}	0.414	-0.171	$-1\epsilon-6$	-1.14	1.14	-&-5
-0.6^{0}	0.622	-0.256	$-2\epsilon-6$	-1.71	1.71	$-1\epsilon-4$
-0.8^{0}	0.829	-0.339	$-2\epsilon-6$	-2.27	2.27	-2e-4

Change In	Translational	Acc eleration	s and Gr	adients on	the +Y	Proof Mas	s
							-

~20 % of requirement

- Two high gain antennas rotate ~7° once per week.
- Sor a 1 mm CM offset of 1 antenna:
 - 3.6x10⁻¹³ m/s² pp over 1 year.
 - 2.2x10⁻¹⁴ m/s² max step

Thruster Propellant Use

- Change in self-gravity from µNthrusters propellant loss is out of band.
- Over life of mission, worst case total change is:
 - 0.7×10^{-10} m/s² (14% of requirement) for colloid thruster with I_{sp}=1000s, total mass = 8 kg.
 - $12x10^{-10}$ m/s² (240% of requirement) for cold gas with I_{sp} =60s, total mass = 20 kg.

- ST-7 DRS flies on the ESA LISA Pathfinder spacecraft
- 🌯 L1 orbit
- baunch date: late 2007
- berational life: 3 months
- The key new technologies are gravitational reference sensors and microthrusters.
 - DRS validate spacecraft position control to an accuracy of <10nm/√Hz over frequency range 1 mHz to 10 mHz
 - DRS validates that a test mass follows trajectory determined by gravitational forces only within 3x10⁻¹⁴ m/s²/√Hz over frequency range 1 mHz to 10 mHz
 - Self-Gravity Requirements:

Туре	Allowed Max. Acceleration
DC acceleration	1.0 x 10 ⁻⁹ m/s ⁻²
DC acceleration gradient	$80.0 \times 10^{-9} 1/s^2$
AC fluctuations	$5.0 \text{x} 10^{-15} \text{ m/s}^2 / \sqrt{\text{H}\zeta}$

- The FEM consisted of 39 subassembly models
- Overall 1,266,463 grid points (7,598,778 DOF)
- Mathematical errors estimated to be less than 0.1%
- Results in the sensing direction:

	Ax (m/s ² x 10 ⁻⁹)	dAx/dx (1/s ² x 10 ⁻⁹)
From the other proof mass	-1.3	10.0
From housing walls alone	-0.4	8.7
From c hass is alone	-9.1	50.7
From GRS assembly	-15.6	174.8
Complete assemb ly	-21.7	124.8
Buda et	1.0	80.0

ST-7 flight provides a self-gravity anchor point.

Ref: SAI-RPT-570, "Preliminary Self-Gravity of the ST7 DRS", by William Haile, 10Feb'04

	+X PM	-X PM	Budget
Ax (m/s ² x 10 ⁻⁹)	-21.7	22.0	1.0
Ay (m/s ² x 10 ⁻⁹)	-21.6	-21.5	
Az (m/s ² x 10 ⁻⁹)	21.2	21.2	
a _x (rad/ ² x 10 ⁻⁹)	-0.01	-0.03	
a _y (rad/s ² x 10 ⁻⁹)	0.14	-0.15	
a _z (rad/s ² x 10 ⁻⁹)	0.04	-0.05	
dAx/dx (1/s ² x 10 ⁻⁹)	124.8	124.8	80.0
dAy/dy (1/s ² x 10 ⁻⁹)	-60.7	-62.0	
dAz/dz (1/s ² x 10 ⁻⁹)	-64.2	-62.8	

- Somplete thermal distortion study (in progress).
- Repeat analysis on evolving LISA design as necessary.
- Update ST-7 analysis after CDR.
- Study effects of non-uniform proof mass density.
- Develop self-gravity balancing techniques and tools.