Broad band acoustic detectors

J.P. Zendri* on behalf of the AURIGA collaboration www.auriga.lnl.infn.it

5th International LISA Symposium

Acoustic detector noise budget:one dimensional lumped model

Quantum mechanics constrain T_n $\frac{k_B^2 T_n^2}{\omega^2} \equiv S_{FF}(\omega) \cdot S_{XX}(\omega) \ge \frac{\hbar^2}{4}$

The noise stiffness K_n is unconstrained

$$K_n = \sqrt{S_{FF}(\omega) / S_{XX}(\omega)}$$

5th International LISA Symposium

Practical limits to the K_n

5th International LISA Symposium

Methods to increase the efficiency: resonant transducers Mechanical signal amplified before the transduction

Broad Band amplification but still a complete thermal noise analysis is missing

5th International LISA Symposium

Auriga method: Resonating matching line

Tuning the electrical mode to the mechanical modes require a very high electrical Q quality factor

This because the equivalent electric mode mass is light

$$M_{el} = \frac{C_{Tr} E_{Bias}^2}{\omega_{el}^2} \Box 20 \ gr.$$

 C_{Tr} = Transducer capacitance

Auriga operate with a Q factor of ~ 500.000

5th International LISA Symposium

Around the sensitivity bandwidth Auriga noise is dominated by LC thermal noise

5th International LISA Symposium

Auriga readout

5th International LISA Symposium

INFN

5th International LISA Symposium

Increase the bandwidth: The Dual detector

Solution One:

Wrong! Dominated by thermal and BA of the reference mass

Solution Two: $M_2 \sim M_1$ but CM_2CM_1

Solution Three: $M_2 \sim M_1$ and same CM Dual Detector

5th International LISA Symposium

Considered geometries for Dual

Dual Sphere

M.Cerdonio et. al., *Phys. Rev. Let.* **8**7, 031101 (2001)

Dual Torus

M.Bonaldi et. al., *Phys Rev.* **D62**, 102004 (2003)

5th International LISA Symposium

Quantum Limited sensitivity curve (dual torus) $K_{n-M_0} = 1.0 \cdot 10^{11} N/m$ $K_{n-SiC} = 1.8 \cdot 10^{11} N / m$ $Q/T \ge 2 \cdot 10^8$ $Q/T \ge 2 \cdot 10^8$ $r_1 = 0.25 \ m \ r_{2-int} = 0.26 \ m \ r_{2-ext} = 0.47 \ m \ r_1 = 0.82 \ m \ r_{2-int} = 0.83 \ m \ r_{2-ext} = 1.44 \ m$ h = 2.35 m Tot weigh = 16.4 t h = 3 m Tot weigh = 61.5 t 1E-21 In order to get $K_n \sim 10^{11} \text{ N/m}$ 1E-22 a lever geometrical S_{hh}^{1/2} (Hz^{-1/2}) NB Adv. LIGO amplification of at least 10 Mo Dual 1E-23 is required I CGT SiC Dual Adv. LIGO 1E-24 1E-25 1000 100 10000 Frequency (Hz) 5th International LISA Symposium 12-15 July 2004

Broad band lever amplification

H.J. Paik et al, Proc. Of the first Amaldi Meeting, edited by E. Coccia et al, World scientific Singapore, p201 (1995)

Mechanical amplification=Y/X=1/a>>1

5th International LISA Symposium

Prototype under test:Amplification

Geometrical gain factor=10

5th International LISA Symposium

5th International LISA Symposium

Prototype thermal noise measurement set-up

Room Temperature Thermal Noises Measurement: 10 µK Stabilized Thermal Box!

5th International LISA Symposium

A possible implementation in Dual-Torus

5th International LISA Symposium

Dual Torus Therm. and BA noise reduction: Wide area sensing

Signal=mean displacement over the readout area=Green surf.+Yellow surf.

5th International LISA Symposium

Dual Torus Therm. and BA noise reduction: Selective readout

5th International LISA Symposium

Conclusions

•Well designed impedance matching lines between the main resonator and the amplifier has been used to widen the useful band of the Auriga detector more than one order of magnitude

• Broad band detectors should be obtained using lever transducers. In particular the proposed detector "dual" promises a sensitivity of the order of 10^{-23} Hz^{-1/2} in the frequency range between 1kHz to 5 kHz.

5th International LISA Symposium

