Parameter estimation

Alberto Vecchio

University of Birmingham – UK

5th LISA Symposium ESTEC, 12th – 15th July 2004

Outline

- Computing the expected minimum mean squared error:
 - Variance-covariance matrix
 - Assumptions
- Summary of results for:
 - (Quasi-) monochromatic signals
 - In-spiraling intermediate mass / massive / super-massive black hole binary systems
- What we have learned and future work

Astronomy with LISA

- Two key (and distinct) motions:
 - 1. <u>LISA orbits the Sun</u>: the signal frequency is Doppler shifted
 - 2. <u>Spacecraft constellation rotates</u> <u>around the normal to the</u> <u>detector plane</u>: the response of the detector is not fixed, that is the antenna pattern is time dependent
- The LISA motion is what provides the detector pointing capability
- Information on physical parameters are mainly (but not only) contained in the GW phase

Variance-covariance matrix

Signal

 $s(t) = h(t; \boldsymbol{\lambda}) + n(t)$

Probability distribution of the errors

$$p(\Delta \lambda) = \left(\frac{\det(\Gamma)}{2\pi}\right)^{1/2} e^{-\frac{1}{2}\Gamma_{jk}\Delta\lambda^{j}\Delta\lambda^{k}} \qquad \Gamma_{jk}^{(i)} \equiv \left(\frac{\partial h^{(i)}}{\partial\lambda^{j}} \middle| \frac{\partial h^{(i)}}{\partial\lambda^{k}} \right)$$

 Lower bound on the minimum mean squared errors (Cramer-Rao bound):

$$\langle (\Delta \lambda^j)^2 \rangle = \Sigma^{jj}, \qquad c^{jk} = \frac{\Sigma^{jk}}{\sqrt{\Sigma^{jj} \Sigma^{kk}}} \qquad (-1 \le c^{jk} \le +1)$$

Assumptions

- Stationary and Gaussian noise
 - Instrumental noise non stationary/Gassian at some level
 - The "confusion noise" is intrinsically non stationary (Seto, 2004)
- High signal-to-noise ratio
 - Surely valid for several signals
 - ... but not for all of them
- Only one source at the time in the data stream
 - De-facto correct for high SNR rare events, such as (super-) massive black hole binaries
 - Just "wrong" for all the other signals in LISA

(Quasi-)monochromatic signals

- Monochromatic signal:
 - 7 parameters: A, f, ϕ_0 , $(\theta_N \phi_N)$, (θ_L, ϕ_L)
 - If linearly chirping, one more parameter (df/dt)

tan	$\tilde{\mu}s$	$\overline{\phi}_{\mathcal{F}}$	Ē.L	预	S_2/N	$\Delta\Omega_{5,I}$	$\Delta \Omega_S$
10 4	0.3	5.0	-0.2	1.0	7.07	1.89×10^{-5}	7.79×10^{-2}
10^{-4}	0.3	5.0	0.2	0.0	7.19	1.87×10^{-1}	7.41×10^{-2}
10 4	0.3	1.0	0.2	4.6	6.89	1.17×10	$7.10 imes 10^{-1}$
10 4	-0.3	1.0	0.8	0,0	6.80	1.26×10	7.15×10^{-2}
3×10^{-1}	0.3	5.0	-0.2	10	7.07	1.47×10^{-1}	6.41×10^{-2}
3×10^{-4}	0.3	5.0	0.2	0.0	7.19	1.41×10^{-1}	6.15×10^{-2}
3×10^{-4}	0.3	1.9	0.2	4.0	6.89	1.04×10^{-5}	$6.20 imes 10^{-2}$
3×10^{-4}	-0.3	1.0	0.8	(0.0)	6.80	1.17×10^{-1}	6.28×10^{-2}
10-3	0.3	3.0	-0.2	10	7.07	6.15×10^{-2}	2.91×10^{-2}
10-8	0.3	5.0	0.2	0.0	7.19	6.04×10^{-2}	2.87×10^{-3}
10 ^B	-0.3	1.0	-0.2	1.0	6.89	6.02×10^{-2}	3.17×10^{-1}
10 .48	-0.3	1.0	0.8	(0.1)	6.80	6.85×10^{-2}	3.10×10^{-2}
1×10^{-3}	0.3	50)	-0.2	46	7.07	1.50×10^{-2}	7.23×10^{-3}
3×10^{-3}	0.3	5.0	0.2	0.0	7.19	1.58×10^{-2}	7.41×10^{-3}
3×10^{-3}	-0.3	1.0	-0.2	4.0	6.89	1.21×10^{-2}	7.60×10^{-3}
3×10^{-3}	-0.3	1.0	0.8	(0.0)	6.80	1.75×10^{-3}	7.04×10 ⁻⁴
10=2	0.3	5.0	-0.2	4,0	7.07	1.93×10^{-3}	$9.07 imes 10^{-4}$
1072	0.3	5.0	0.2	0.0	7.19	2.16×10^{-3}	9.55×10^{-4}
10 2	-0.3	1.0	-0.2	1.0	6.89	1.97×10^{-3}	$7.98 imes 10^{-1}$
10^{-2}	-0.3	1.0	0.8	11.1	6.80	1.95×10^{-3}	7.60×10^{-4}

A Vecchio – Parameter estimation

Finite arm length

Finite arm length (L ~ 16 sec) induce amplitude and phase modulations that depend on source frequency and position

However for <u>detection</u> the long wavelength approximation is fine up to 10 mHz: **FF > 0.97**

(Rubbo et al, 2004)

Impact of finite arm length

5th LISA Symposium

A Vecchio – Parameter estimation

Multiple sources

(Crowder and Cornish, gr-qc/0404129)

- If just 4 binaries are present in the data set, for 1 year of observation the errors increase by a factor~ 10 (with respect to the 1 source case)
- However long(er) integration time helps considerably:
 - T > 3 years

Massive black hole binaries

- In-spiral signal (last year of coalescence):
 - 11 parameters (2PN): m_1 , $m_2 \beta \sigma$, D, $(\theta_N \phi_N)$, (θ_L , ϕ_L) , t_0 , ϕ_0

$m_1(=m_2)$	$\rho_{\rm insp}$	T_{insp}	$\rho_{\rm ring}$	$\delta D/D$	δz≟/z	$\delta z_2/z$	$\delta \mathcal{M}_z/\mathcal{M}_z$	$\delta\mu_z/\mu_z$
$10^{3} M_{\odot}$	20	575 days	10-3	0.08	0.15	0.05	5×10^{-5}	0.05
10^4M_{\odot}	150	550 days	0.25	0.05	0.15	0.04	$5 imes10^{-5}$	0.03
$10^8 M_\odot$	1000	430 days	60	0.62	0.15	0.02	1×10^{-4}	0.04
$10^6 M_\odot$	200	15 days	3500	0.2	0.2	0.2	5×10^{-3}	0.5
$10^7~M_{\odot}$	40	100 minutes	612	70	70	70	150	300
Restricted	host_N	lewtonian app	oroxima	ation				
	smolo	g Cosmo	logy					
CO								

5th LISA Symposium

A Vecchio – Parameter estimation (Hughes, 2002)

(Main) effect of spins: precession of the orbital plane

A Vecchio – Parameter estimation

Impact of spin-orbit precession

A Vecchio – Parameter estimation

Impact of finite arm-length

5th LISA Symposium

A Vecchio – Parameter estimation

Other effects

 Use <u>full</u> post-Newtonian approximation (include the other harmonics):

$$h_{\pm,\times}(t) = \Re\left\{\sum_k H^{(k)}_{\pm,\times}(t) \, e^{i \, k \, \phi_{\rm ort}(t)}\right\}$$

- Additional information
- Errors are reduced by a factor ~ 3 (Moore and Hellings, 2002; Sintes and AV, 2000)

• Weak lensing:

- Measure of the luminosity distance is affected by the magnification $\boldsymbol{\mu}$
- Introduce systematic error (Holz and Hughes, astro-ph/ 0212218)

Strong lensing:

- Multiple images help in reconstructing the parameters
- Improve significantly parameter extraction, but likely very rare (Seto, 2004)

$$\Delta D_L/D_L = 1 - 1/\sqrt{\mu}$$

Impact of low frequency for high mass/redshift binaries

$m_1(=m_2)$	$\rho_{\rm insp}$	T_{insp}	Pring	$\delta D/D$	$\delta z_{\perp}/z$	$\delta z_2/z$	$\delta \mathcal{M}_z/\mathcal{M}_z$	$\delta\mu_z/\mu$
10^3M_{\odot}	$\overline{20}$	575 days	10-5	0.08	0.15	0.05	5×10^{-5}	0.05
10^4M_{\odot}	150	550 days	0.25	0.05	0.15	0.04	$5 imes 10^{-5}$	0.03
10^8M_\odot	1000	130 days	60	0.02	0.15	0.02	1×10^{-4}	0.04
$10^6 M_\odot$	200	15 days	3500	0.2	0.2	0.2	5×10^{-3}	0.5
$10^7 M_{\odot}$	-40	100 minutes	612	70	70	70	150	300
$10^7 M_{\odot}$	40	100 minutes	612	70 see also	70 talks l	70 by Cen	150 trella and F	Phin

Information extraction vs observation time

Conclusions

- Typical results:
 - WD binaries: angular resolution ~ 1-100 square degrees [not great but good enough for follow on observations in the mHz range]
 - Massive black hole binaries:
 - Physical parameters (masses and spins) measured with high accuracy (< 1%)
 - Distance: probably hard to do better than a few %
 - Angular resolution: in general several square degrees (but we might be lucky and detect an event with error box 5 arcsec x arcsec)
- We have a fairly good understanding of what are the key factors that affect information extraction in the case of one source
- We need to work on
 - Multiple sources
 - Mock data analysis to see what we can actually do in "battle conditions"
- LISA astronomy would definitely benefit from a <u>long</u> mission (T > 5 years)