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Extreme mass ratio inspirals

• Inspiral of a compact body into a
supermassive black hole.

• Inspirals radiate in the LISA band for
M ∼ few × 105 − few × 106M�.

• Orbits are typically eccentric and
exhibit ‘zoom and whirl’ behavior.

• Complicated gravitational waveforms
provide a map of the spacetime
geometry around spinning black holes.

• Desire to detect many EMRIs is driving
the specification for the floor of the
LISA noise curve.
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Data analysis challenges

• The parameter space is very large, waveforms depend on 17 different parameters
−M , S, m, e, rp, ι, ψ0, χ0, φ0, θK, φK, θs, φs, D plus 3 parameters describing
the spin of the small body, but we ignore this for now.

• Waveform has ∼ 105 cycles in last year of inspiral. For matched filtering, might
näıvely estimate ∼ (105)8 = 1040 templates needed.

• Search will be computationally limited. Envisage a mixed coherent/incoherent
search. First stage is a coherent search of short segments of the data stream.

• Confusion from white dwarfs makes detection of EMRIs more difficult. Assume
these can be removed to some level, although it is unlikely to be that simple in
practice.
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Scoping out data analysis − ‘numerical kludge’ waveforms

• True gravitational waveforms are given accurately by perturbation theory.
Existing codes are too slow and a generic code does not yet exist.

• Use kludged waveforms to scope out data analysis - both ‘analytic’ (Barack and
Cutler), and ‘numerical’:

? Assume inspiral evolves adiabatically along a sequence of geodesics.
? Use post-Newtonian expressions to evolve the geodesic parameters.
? Compute approximate quadrupole radiation from resulting orbit.
? Include modulations due to LISA orbital motion.

• Analytic and numerical kludge waveforms drift out of phase over a few hours,
but template counts agree to a few tens of percent. A useful sanity check!
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• Replace one parameter (e.g., rp) with a time offset. Can search time offsets
cheaply using inverse FFTs.
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Coherent search − template counting

• Length of segments in coherent
search is fixed by computational
limitations.

• Define the usual metric on
template space and use Monte
Carlo simulations to estimate
number of intrinsic templates
required as a function of coherent
integration time.

• Assuming 50 Teraflops computing
power, and a ‘match factor’,
M = 0.8, find we are limited
to coherent integrations of length
∼ 3 weeks.
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Second stage - incoherent summation

• Build up SNR by incoherent
summation of power.

• The angles ψ0, χ0 vary on a
dynamical timescale. Would
need to try a huge number
of trajectories if we forced
consistency on these parameters.

• Instead, maximize ρ2 over all
possible values of ψ0 and χ0

before summation.

• Final search statistic is the sum
P =

∑
Pk along trajectories

through the coherent segments.

• Set threshold on P to give search
an overall false alarm rate of 1%.
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• Conservative rates could be a factor of ∼ 100 smaller for WDs, or a factor of
∼ 10 smaller for black holes.
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Estimating the LISA event rate

• Using these astrophysical rates, we can estimate the number of LISA events,
under two sets of assumptions −

? Optimistic − Assume a 5 year LISA lifetime; SNRs computed using optimal
AET combination; optimistic white dwarf subtraction; three week coherent
integrations (threshold SNR ∼ 36).

? Pessimistic − Assume a 3 year LISA lifetime; SNRs computed from a single
synthetic Michelson (X); pessimistic (gCLEAN) white dwarf subtraction; two
week coherent integrations (threshold SNR ∼ 34).

• Repeat the calculation for ‘Short LISA’ with 1.6× 106km arms.
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Estimated LISA event rates

• Final results are shown below. For z > 1, system evolution is uncertain and flat
space extrapolation is no longer valid, so we quote z < 1 lower limits (∗).

M• m LISA Short LISA
Optimistic Pessimistic Optimistic Pessimistic

300 000 0.6 10 < 1 10 1
300 000 10 700* 90 900 120
300 000 100 1* 1* 1* 1*

1 000 000 0.6 90 10 80 10
1 000 000 10 1100* 660* 1100* 500
1 000 000 100 1* 1* 1* 1*

3 000 000 0.6 70 2 10 < 1
3 000 000 10 1700* 130 820 20
3 000 000 100 2* 1* 2* 1
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Alternative approaches to EMRI detection − time/frequency
analysis

• Non-template based searches would have the advantage of computational
simplicity at the cost of reduced event rates and poor parameter estimation.

• One possibility is a time/frequency approach − search for clustering in the
(t, f) plane.

• This method might be able to detect sources as distant as 2 Gpc.

• This cannot be used instead of the matched filtering search, but might be useful
as a first stage to pick out the loudest sources.

• More details on poster by Linqing Wen et al.
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Outstanding Issues

• Event rates are promising, but there are uncertainties, especially in the
astrophysical rates.

• Did not includ the effects of the EMRI confusion background, which could be
the dominant noise for f ∼ 2− 5mHz.

• Have not considered how to subtract multiple overlapping sources.

• Must integrate this search with other aspects of LISA data analysis.

• Search method can be improved in various ways − using higher waveform
multipoles, more stages to the heirarchy etc.

• Pursue alternative methods to use in conjunction with this approach.


