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Scoping out data analysis — ‘numerical kludge’ waveforms

True gravitational waveforms are given accurately by perturbation theory.
Existing codes are too slow and a generic code does not yet exist.

Use kludged waveforms to scope out data analysis - both ‘analytic’ (Barack and
Cutler), and ‘numerical’:

* Assume inspiral evolves adiabatically along a sequence of geodesics.
* Use post-Newtonian expressions to evolve the geodesic parameters.
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Second stage - incoherent summation

Build up SNR by incoherent
summation of power.

The angles 19, xo vary on a
dynamical timescale. Would
need to try a huge number
of trajectories if we forced
consistency on these parameters.

Instead, maximize p* over all
possible values of g and g
before summation.

Final search statistic is the sum
P = > P, along trajectories
through the coherent segments.

Set threshold on P to give search
an overall false alarm rate of 1%.

Coherent templates
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Estimated LISA event rates

Final results are shown below. For z > 1, system evolution is uncertain and flat
space extrapolation is no longer valid, so we quote z < 1 lower limits (x).

Moo m LISA Short LISA
Optimistic Pessimistic Optimistic Pessimistic
300 000 0.6 10 <1 10 1
300 000 10 700%* 90 900 120
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