Detection of extreme mass ratio inspirals with LISA - search strategy and detection rate estimates

Jonathan Gair, Caltech

In collaboration with: Leor Barack, Teviet Creighton, Curt Cutler, Shane Larson, Sterl Phinney and Michele Vallisneri

LISA Symposium 07-15-2004
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.

- Inspirals radiate in the LISA band for $M \sim \text{few} \times 10^5 - \text{few} \times 10^6 M_\odot$.
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.
- Inspirals radiate in the LISA band for $M \sim \text{few } \times 10^5 - \text{few } \times 10^6 M_\odot$.
- Orbits are typically eccentric and exhibit ‘zoom and whirl’ behavior.
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.

- Inspirals radiate in the LISA band for $M \sim \text{few } \times 10^5 - \text{few } \times 10^6 M_\odot$.

- Orbits are typically eccentric and exhibit ‘zoom and whirl’ behavior.

- Complicated gravitational waveforms provide a map of the spacetime geometry around spinning black holes.
Extreme mass ratio inspirals

- Inspiral of a compact body into a supermassive black hole.

- Inspirals radiate in the LISA band for $M \sim \text{few } \times 10^5 - \text{few } \times 10^6 M_\odot$.

- Orbits are typically eccentric and exhibit ‘zoom and whirl’ behavior.

- Complicated gravitational waveforms provide a map of the spacetime geometry around spinning black holes.

- Desire to detect many EMRI is driving the specification for the floor of the LISA noise curve.
Data analysis challenges

- The parameter space is very large, waveforms depend on 17 different parameters — $M, S, m, e, r_p, \iota, \psi_0, \chi_0, \phi_0, \theta_K, \phi_K, \theta_s, \phi_s, D$ plus 3 parameters describing the spin of the small body, but we ignore this for now.
Data analysis challenges

- The parameter space is very large, waveforms depend on 17 different parameters — M, S, m, e, r_p, ι, ψ_0, χ_0, ϕ_0, θ_K, ϕ_K, θ_s, ϕ_s, D plus 3 parameters describing the spin of the small body, but we ignore this for now.

- Waveform has $\sim 10^5$ cycles in last year of inspiral. For matched filtering, might naively estimate $\sim (10^5)^8 = 10^{40}$ templates needed.
Data analysis challenges

- The parameter space is very large, waveforms depend on 17 different parameters \(M, S, m, e, r_p, \iota, \psi_0, \chi_0, \phi_0, \theta_K, \phi_K, \theta_s, \phi_s, D \) plus 3 parameters describing the spin of the small body, but we ignore this for now.

- Waveform has \(\sim 10^5 \) cycles in last year of inspiral. For matched filtering, might naively estimate \(\sim (10^5)^8 = 10^{40} \) templates needed.

- Search will be computationally limited. Envisage a mixed coherent/incoherent search. First stage is a coherent search of short segments of the data stream.
Data analysis challenges

- The parameter space is very large, waveforms depend on 17 different parameters — $M, S, m, e, r_p, \iota, \psi_0, \chi_0, \phi_0, \theta_K, \phi_K, \theta_s, \phi_s, D$ plus 3 parameters describing the spin of the small body, but we ignore this for now.

- Waveform has $\sim 10^5$ cycles in last year of inspiral. For matched filtering, might naively estimate $\sim (10^5)^8 = 10^{40}$ templates needed.

- Search will be computationally limited. Envisage a mixed coherent/incoherent search. First stage is a coherent search of short segments of the data stream.

- Confusion from white dwarfs makes detection of EMRIs more difficult. Assume these can be removed to some level, although it is unlikely to be that simple in practice.
Scoping out data analysis – ‘numerical kludge’ waveforms

- True gravitational waveforms are given accurately by perturbation theory. Existing codes are too slow and a generic code does not yet exist.
Scoping out data analysis – ‘numerical kludge’ waveforms

- True gravitational waveforms are given accurately by perturbation theory. Existing codes are too slow and a generic code does not yet exist.

- Use kludged waveforms to scope out data analysis - both ‘analytic’ (Barack and Cutler), and ‘numerical’:
 - Assume inspiral evolves adiabatically along a sequence of geodesics.
Scoping out data analysis — ‘numerical kludge’ waveforms

- True gravitational waveforms are given accurately by perturbation theory. Existing codes are too slow and a generic code does not yet exist.

- Use kludged waveforms to scope out data analysis - both ‘analytic’ (Barack and Cutler), and ‘numerical’:
 - Assume inspiral evolves adiabatically along a sequence of geodesics.
 - Use post-Newtonian expressions to evolve the geodesic parameters.
Scoping out data analysis — ‘numerical kludge’ waveforms

- True gravitational waveforms are given accurately by perturbation theory. Existing codes are too slow and a generic code does not yet exist.

- Use kludged waveforms to scope out data analysis - both ‘analytic’ (Barack and Cutler), and ‘numerical’:
 - Assume inspiral evolves adiabatically along a sequence of geodesics.
 - Use post-Newtonian expressions to evolve the geodesic parameters.
 - Compute approximate quadrupole radiation from resulting orbit.
Scoping out data analysis – ‘numerical kludge’ waveforms

- True gravitational waveforms are given accurately by perturbation theory. Existing codes are too slow and a generic code does not yet exist.

- Use kludged waveforms to scope out data analysis - both ‘analytic’ (Barack and Cutler), and ‘numerical’:
 - Assume inspiral evolves adiabatically along a sequence of geodesics.
 - Use post-Newtonian expressions to evolve the geodesic parameters.
 - Compute approximate quadrupole radiation from resulting orbit.
 - Include modulations due to LISA orbital motion.
Scoping out data analysis – ‘numerical kludge’ waveforms

- True gravitational waveforms are given accurately by perturbation theory. Existing codes are too slow and a generic code does not yet exist.

- Use kludged waveforms to scope out data analysis - both ‘analytic’ (Barack and Cutler), and ‘numerical’:
 - Assume inspiral evolves adiabatically along a sequence of geodesics.
 - Use post-Newtonian expressions to evolve the geodesic parameters.
 - Compute approximate quadrupole radiation from resulting orbit.
 - Include modulations due to LISA orbital motion.

- Analytic and numerical kludge waveforms drift out of phase over a few hours, but template counts agree to a few tens of percent. A useful sanity check!
Coherent search – computational simplifications

- First stage of search is coherent – carry out matched filtering using shorter (∼few week) waveform segments.
Coherent search – computational simplifications

- First stage of search is coherent – carry out matched filtering using shorter (\(\sim\) few week) waveform segments.

- On these timescales, five parameters — \(\theta_S, \phi_S, \theta_K, \phi_K\) and \(\phi_0\) are extrinsic. Assuming a pure quadrupole gravitational waveform, the \(\rho^2\) statistic maximizes over these parameters automatically.
Coherent search — computational simplifications

- First stage of search is coherent — carry out matched filtering using shorter (∼few week) waveform segments.

- On these timescales, five parameters — θ_S, ϕ_S, θ_K, ϕ_K and ϕ_0 are extrinsic. Assuming a pure quadrupole gravitational waveform, the ρ^2 statistic maximizes over these parameters automatically.

$$
\rho^2 = \sum_{\alpha=I}^{II} \sum_{i=1}^{5} \langle h_i(\lambda_I), s_{\alpha} \rangle^2 , \quad \text{where} \quad \langle a, b \rangle = 4 \Re \left[\int_{0}^{\infty} \frac{\tilde{a}^*(f) \tilde{b}(f)}{S_b(f)} df \right] \tag{1}
$$
Coherent search — computational simplifications

- First stage of search is coherent — carry out matched filtering using shorter (~few week) waveform segments.

- On these timescales, five parameters — \(\theta_S, \phi_S, \theta_K, \phi_K \) and \(\phi_0 \) are extrinsic. Assuming a pure quadrupole gravitational waveform, the \(\rho^2 \) statistic maximizes over these parameters automatically.

\[
\rho^2 = \sum_{\alpha=I}^{II} \sum_{i=1}^{5} \langle h_i(\lambda_I), s_\alpha \rangle^2, \quad \text{where} \quad \langle a, b \rangle = 4 \Re \left[\int_0^\infty \tilde{a}^*(f) \tilde{b}(f) \frac{d f}{S_b(f)} \right] \quad (1)
\]

- Replace one parameter (e.g., \(r_p \)) with a time offset. Can search time offsets cheaply using inverse FFTs.
Coherent search – template counting

- Length of segments in coherent search is fixed by computational limitations.
Coherent search – template counting

- Length of segments in coherent search is fixed by computational limitations.

- Define the usual metric on template space and use Monte Carlo simulations to estimate number of intrinsic templates required as a function of coherent integration time.
Coherent search – template counting

- Length of segments in coherent search is fixed by computational limitations.

- Define the usual metric on template space and use Monte Carlo simulations to estimate number of intrinsic templates required as a function of coherent integration time.

- Assuming 50 Teraflops computing power, and a ‘match factor’, $M = 0.8$, find we are limited to coherent integrations of length ~ 3 weeks.
Second stage - incoherent summation

- Build up SNR by incoherent summation of power.
Second stage - incoherent summation

- Build up SNR by incoherent summation of power.
- The angles ψ_0, χ_0 vary on a dynamical timescale. Would need to try a huge number of trajectories if we forced consistency on these parameters.
Second stage - incoherent summation

- Build up SNR by incoherent summation of power.

- The angles ψ_0, χ_0 vary on a dynamical timescale. Would need to try a huge number of trajectories if we forced consistency on these parameters.

- Instead, maximize ρ^2 over all possible values of ψ_0 and χ_0 before summation.
Second stage - incoherent summation

- Build up SNR by incoherent summation of power.
- The angles ψ_0, χ_0 vary on a dynamical timescale. Would need to try a huge number of trajectories if we forced consistency on these parameters.
- Instead, maximize ρ^2 over all possible values of ψ_0 and χ_0 before summation.
- Final search statistic is the sum $P = \sum P_k$ along trajectories through the coherent segments.
Second stage - incoherent summation

- Build up SNR by incoherent summation of power.
- The angles ψ_0, χ_0 vary on a dynamical timescale. Would need to try a huge number of trajectories if we forced consistency on these parameters.
- Instead, maximize ρ^2 over all possible values of ψ_0 and χ_0 before summation.
- Final search statistic is the sum $P = \sum P_k$ along trajectories through the coherent segments.
- Set threshold on P to give search an overall false alarm rate of 1%.
Astrophysical event rates

- Use galaxy luminosity function and $L - \sigma / M - \sigma$ relations to estimate space density of black holes $M_\bullet \frac{dN}{dM_\bullet} = 1.5 \times 10^{-3} h_{65}^2 \ Mpc^{-3}$.
Astrophysical event rates

- Use galaxy luminosity function and $L - \sigma / M - \sigma$ relations to estimate space density of black holes $M_\bullet \frac{dN}{dM_\bullet} = 1.5 \times 10^{-3} h_{65}^2 \text{Mpc}^{-3}$.

- Use capture rates from Marc Freitag’s simulation of the Milky Way. Scale these to other galaxies by assuming an $M_\bullet^{3/8}$ dependence.
Astrophysical event rates

- Use galaxy luminosity function and $L - \sigma / M - \sigma$ relations to estimate space density of black holes $M_\bullet \frac{dN}{dM_\bullet} = 1.5 \times 10^{-3} h_{65}^2 \text{Mpc}^{-3}$.

- Use capture rates from Marc Freitag's simulation of the Milky Way. Scale these to other galaxies by assuming an M_\bullet^3 dependence.

<table>
<thead>
<tr>
<th>$M_\bullet \ M_\odot$</th>
<th>space density $10^{-3} h_{65}^2 \text{Mpc}^{-3}$</th>
<th>Merger rate $R \ Gpc^{-3} \text{yr}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{6.5 \pm 0.25}$</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>$10^{6.0 \pm 0.25}$</td>
<td>1.7</td>
<td>6</td>
</tr>
<tr>
<td>$10^{5.5 \pm 0.25}$</td>
<td>1.7</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table I: Estimated capture rates
Astrophysical event rates

- Use galaxy luminosity function and $L - \sigma / M - \sigma$ relations to estimate space density of black holes $M_\bullet \frac{dN}{dM_\bullet} = 1.5 \times 10^{-3} h^2_{65} Mpc^{-3}$.

- Use capture rates from Marc Freitag’s simulation of the Milky Way. Scale these to other galaxies by assuming an M_σ^3 dependence.

<table>
<thead>
<tr>
<th>M_\bullet (M_\odot)</th>
<th>space density (10^{-3} h^2_{65} \text{Mpc}^{-3})</th>
<th>Merger rate (R) (\text{Gpc}^{-3} \text{y}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6 (M_\odot) WD</td>
<td>1.4 (M_\odot) MWD/NS</td>
</tr>
<tr>
<td>(10^6.5 \pm 0.25)</td>
<td>1.7</td>
<td>8.5</td>
</tr>
<tr>
<td>(10^6.0 \pm 0.25)</td>
<td>1.7</td>
<td>6</td>
</tr>
<tr>
<td>(10^5.5 \pm 0.25)</td>
<td>1.7</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table I: Estimated capture rates

- Conservative rates could be a factor of \(\sim 100\) smaller for WDs, or a factor of \(\sim 10\) smaller for black holes.
Estimating the LISA event rate

- Using these astrophysical rates, we can estimate the number of LISA events, under two sets of assumptions —

 - Optimistic — Assume a 5 year LISA lifetime; SNRs computed using optimal AET combination; optimistic white dwarf subtraction; three week coherent integrations (threshold SNR ~ 36).
Estimating the LISA event rate

- Using these astrophysical rates, we can estimate the number of LISA events, under two sets of assumptions —

 ⚫ Optimistic — Assume a 5 year LISA lifetime; SNRs computed using optimal AET combination; optimistic white dwarf subtraction; three week coherent integrations (threshold SNR ~ 36).

 ⚫ Pessimistic — Assume a 3 year LISA lifetime; SNRs computed from a single synthetic Michelson (X); pessimistic (gCLEAN) white dwarf subtraction; two week coherent integrations (threshold SNR ~ 34).
Estimating the LISA event rate

- Using these astrophysical rates, we can estimate the number of LISA events, under two sets of assumptions —

Optimistic — Assume a 5 year LISA lifetime; SNRs computed using optimal AET combination; optimistic white dwarf subtraction; three week coherent integrations (threshold SNR ~ 36).

Pessimistic — Assume a 3 year LISA lifetime; SNRs computed from a single synthetic Michelson (X); pessimistic (gCLEAN) white dwarf subtraction; two week coherent integrations (threshold SNR ~ 34).

- Repeat the calculation for ‘Short LISA’ with 1.6×10^6 km arms.
Estimated LISA event rates

- Final results are shown below. For $z > 1$, system evolution is uncertain and flat space extrapolation is no longer valid, so we quote $z < 1$ lower limits (*)..

<table>
<thead>
<tr>
<th>M_\bullet</th>
<th>m</th>
<th>LISA</th>
<th>Short LISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Optimistic</td>
<td>Pessimistic</td>
</tr>
<tr>
<td>300 000</td>
<td>0.6</td>
<td>10</td>
<td>< 1</td>
</tr>
<tr>
<td>300 000</td>
<td>10</td>
<td>700*</td>
<td>90</td>
</tr>
<tr>
<td>300 000</td>
<td>100</td>
<td>1*</td>
<td>1*</td>
</tr>
<tr>
<td>1 000 000</td>
<td>0.6</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>1 000 000</td>
<td>10</td>
<td>1 100*</td>
<td>660*</td>
</tr>
<tr>
<td>1 000 000</td>
<td>100</td>
<td>1*</td>
<td>1*</td>
</tr>
<tr>
<td>3 000 000</td>
<td>0.6</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>3 000 000</td>
<td>10</td>
<td>1 700*</td>
<td>130</td>
</tr>
<tr>
<td>3 000 000</td>
<td>100</td>
<td>2*</td>
<td>1*</td>
</tr>
</tbody>
</table>
Alternative approaches to EMRI detection – time/frequency analysis

- Non-template based searches would have the advantage of computational simplicity at the cost of reduced event rates and poor parameter estimation.
Alternative approaches to EMRI detection — time/frequency analysis

- Non-template based searches would have the advantage of computational simplicity at the cost of reduced event rates and poor parameter estimation.

- One possibility is a time/frequency approach — search for clustering in the (t, f) plane.
Alternative approaches to EMRI detection — time/frequency analysis

- Non-template based searches would have the advantage of computational simplicity at the cost of reduced event rates and poor parameter estimation.

- One possibility is a time/frequency approach — search for clustering in the \((t, f)\) plane.

- This method might be able to detect sources as distant as 2 Gpc.
Alternative approaches to EMRI detection — time/frequency analysis

- Non-template based searches would have the advantage of computational simplicity at the cost of reduced event rates and poor parameter estimation.

- One possibility is a time/frequency approach — search for clustering in the \((t, f)\) plane.

- This method might be able to detect sources as distant as 2 Gpc.

- This cannot be used instead of the matched filtering search, but might be useful as a first stage to pick out the loudest sources.
Alternative approaches to EMRI detection — time/frequency analysis

- Non-template based searches would have the advantage of computational simplicity at the cost of reduced event rates and poor parameter estimation.

- One possibility is a time/frequency approach — search for clustering in the \((t, f)\) plane.

- This method might be able to detect sources as distant as 2 Gpc.

- This cannot be used instead of the matched filtering search, but might be useful as a first stage to pick out the loudest sources.

- More details on poster by Linqing Wen et al.
Outstanding Issues

- Event rates are promising, but there are uncertainties, especially in the astrophysical rates.
Outstanding Issues

- Event rates are promising, but there are uncertainties, especially in the astrophysical rates.

- Did not include the effects of the EMRI confusion background, which could be the dominant noise for $f \sim 2 - 5 \text{mHz}$.
Outstanding Issues

- Event rates are promising, but there are uncertainties, especially in the astrophysical rates.

- Did not include the effects of the EMRI confusion background, which could be the dominant noise for $f \sim 2 - 5\text{mHz}$.

- Have not considered how to subtract multiple overlapping sources.
Outstanding Issues

- Event rates are promising, but there are uncertainties, especially in the astrophysical rates.

- Did not include the effects of the EMRI confusion background, which could be the dominant noise for \(f \sim 2 - 5 \text{mHz} \).

- Have not considered how to subtract multiple overlapping sources.

- Must integrate this search with other aspects of LISA data analysis.
Outstanding Issues

- Event rates are promising, but there are uncertainties, especially in the astrophysical rates.

- Did not include the effects of the EMRI confusion background, which could be the dominant noise for $f \sim 2 - 5 \text{mHz}$.

- Have not considered how to subtract multiple overlapping sources.

- Must integrate this search with other aspects of LISA data analysis.

- Search method can be improved in various ways — using higher waveform multipoles, more stages to the hierarchy etc.
Outstanding Issues

- Event rates are promising, but there are uncertainties, especially in the astrophysical rates.

- Did not include the effects of the EMRI confusion background, which could be the dominant noise for $f \sim 2-5\text{mHz}$.

- Have not considered how to subtract multiple overlapping sources.

- Must integrate this search with other aspects of LISA data analysis.

- Search method can be improved in various ways — using higher waveform multipoles, more stages to the hierarchy etc.

- Pursue alternative methods to use in conjunction with this approach.