Untangling LISA Source Confusion

Neil Cornish Louis Rubbo, Seth Timpano, Jeff Crowder, Ron Hellings

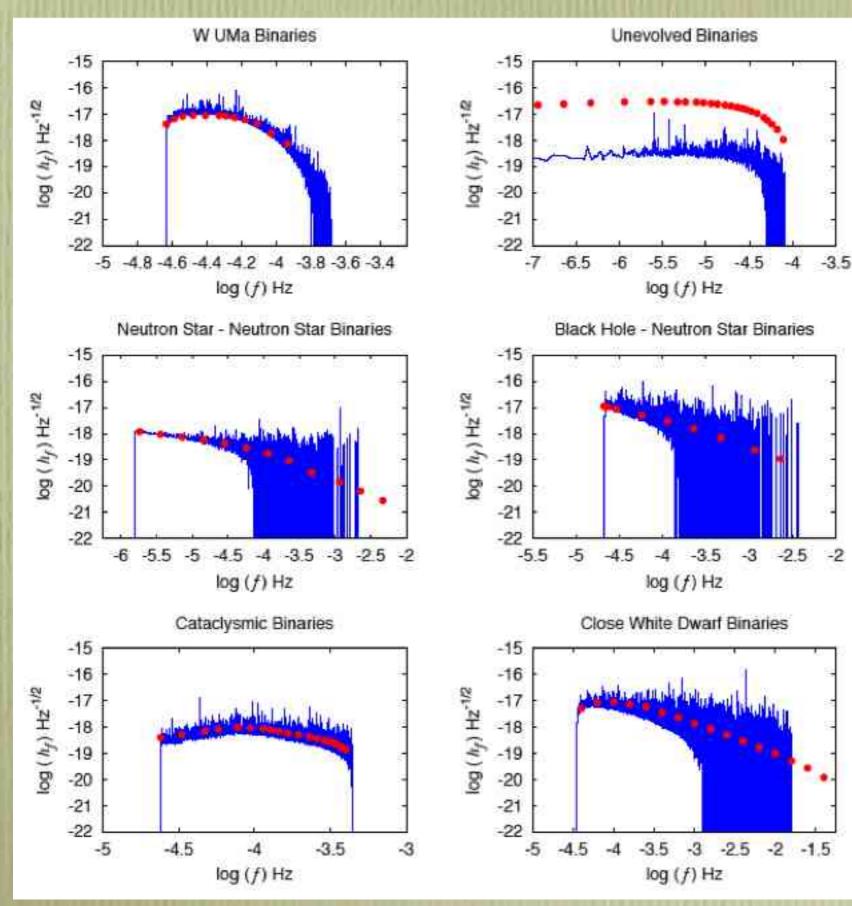
Embarrassment of Riches

- Galactic & Extra-Galactic Stellar Binaries
- Super Massive Black Hole Binaries
- Extreme Mass Ratio Inspirals
- Cosmic String Cusps
- Bursts
- etc.

"All Sky, All the Time"

Non-Orthogonal Signals ___Overlap and Confusion

Galactic Background

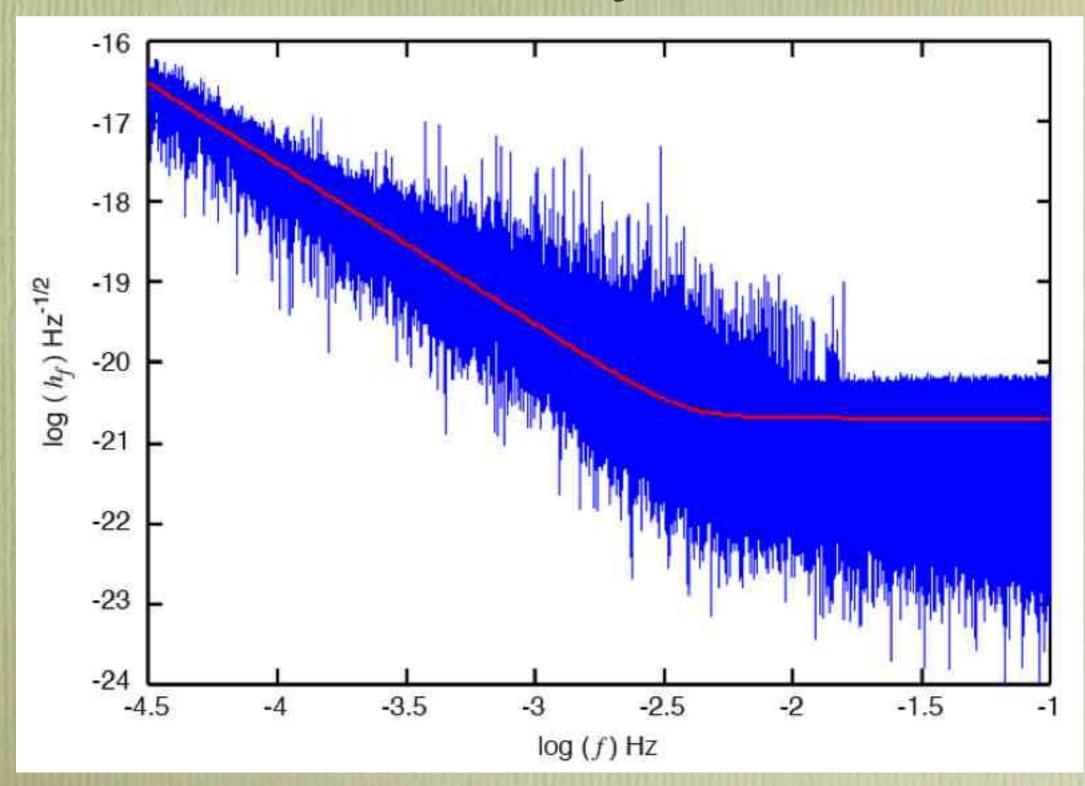


Hils, Bender & Webbink, ApJ 75, 360 (1990)

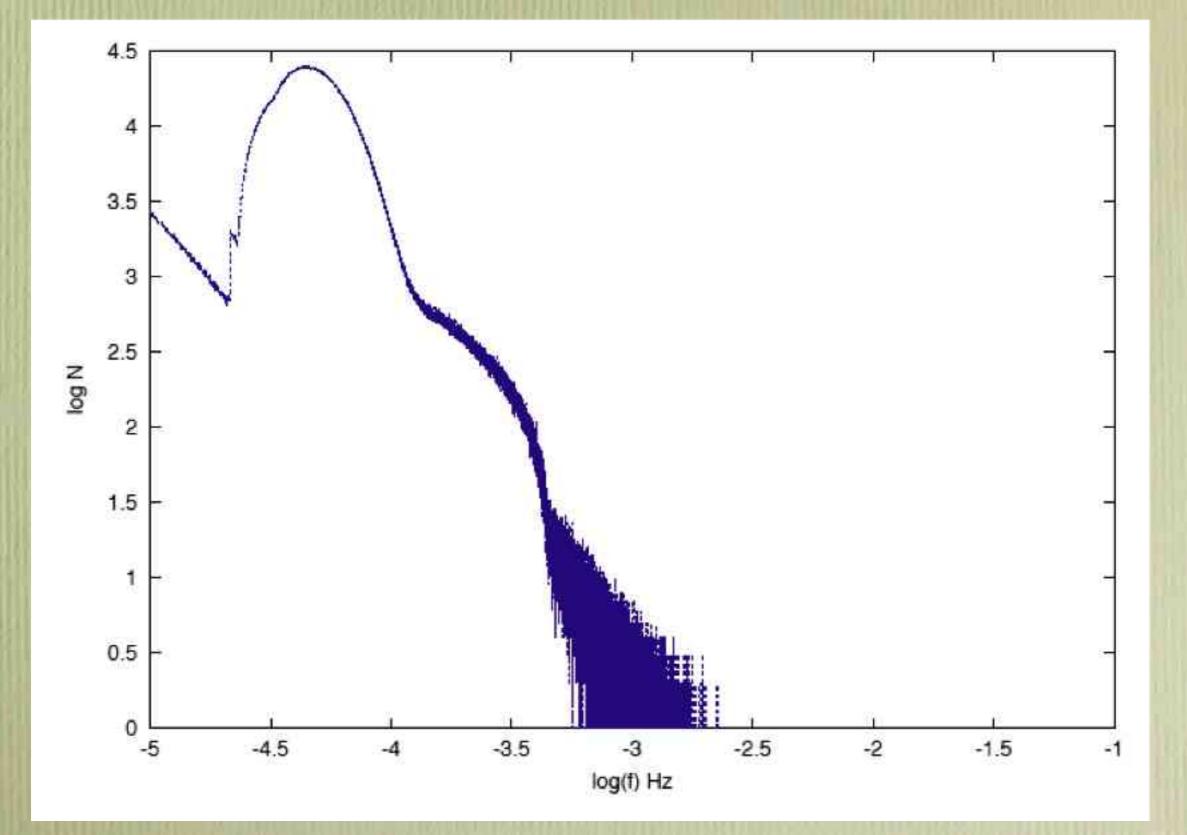
Rubbo, Timpano & Cornish, in preparation

$3 imes 10^7$	W UMa
$7 imes 10^6$	Unevolved
1×10^{6}	NS - NS
$5 imes 10^5$	BH - NS
$1 imes 10^6$	Cataclysimic
3×10^{6}	WD - WD

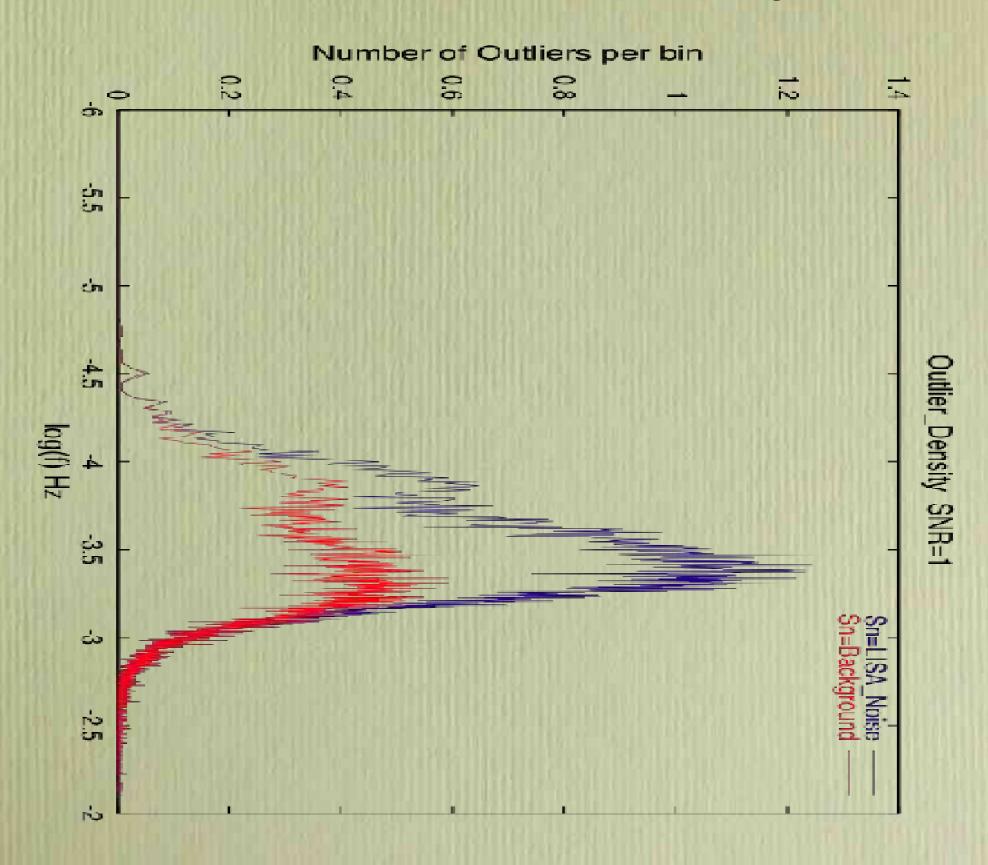
Galactic Background as seen by LISA



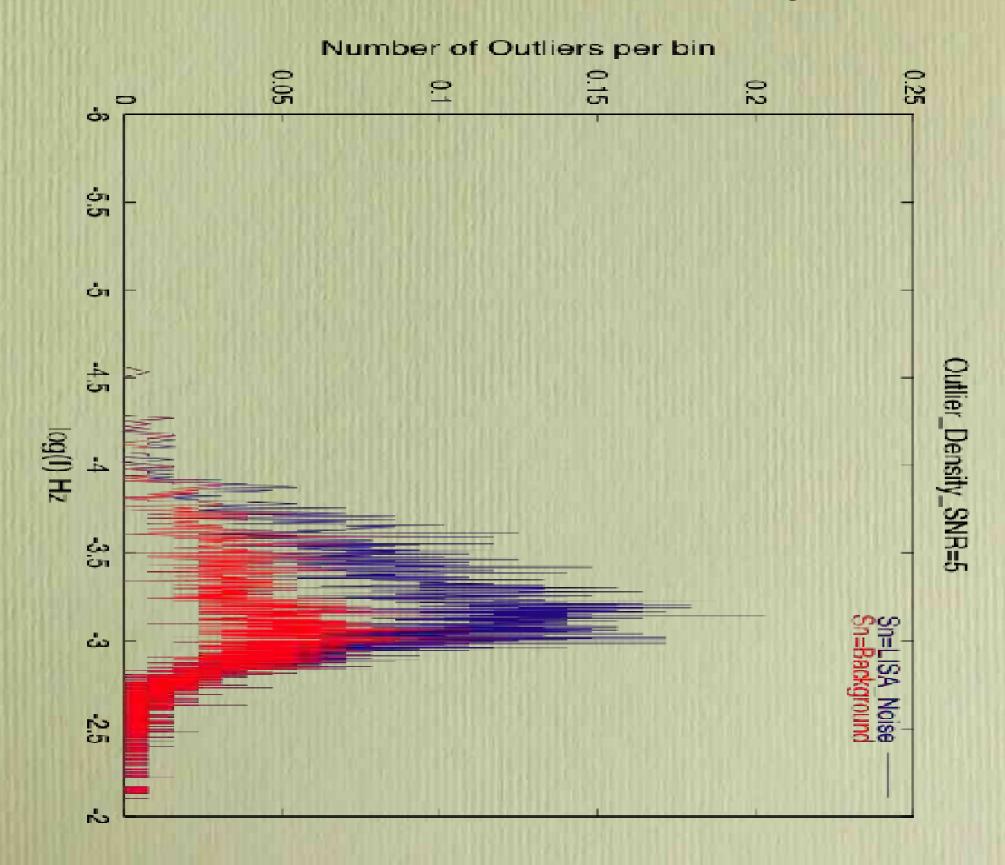
Source Density I



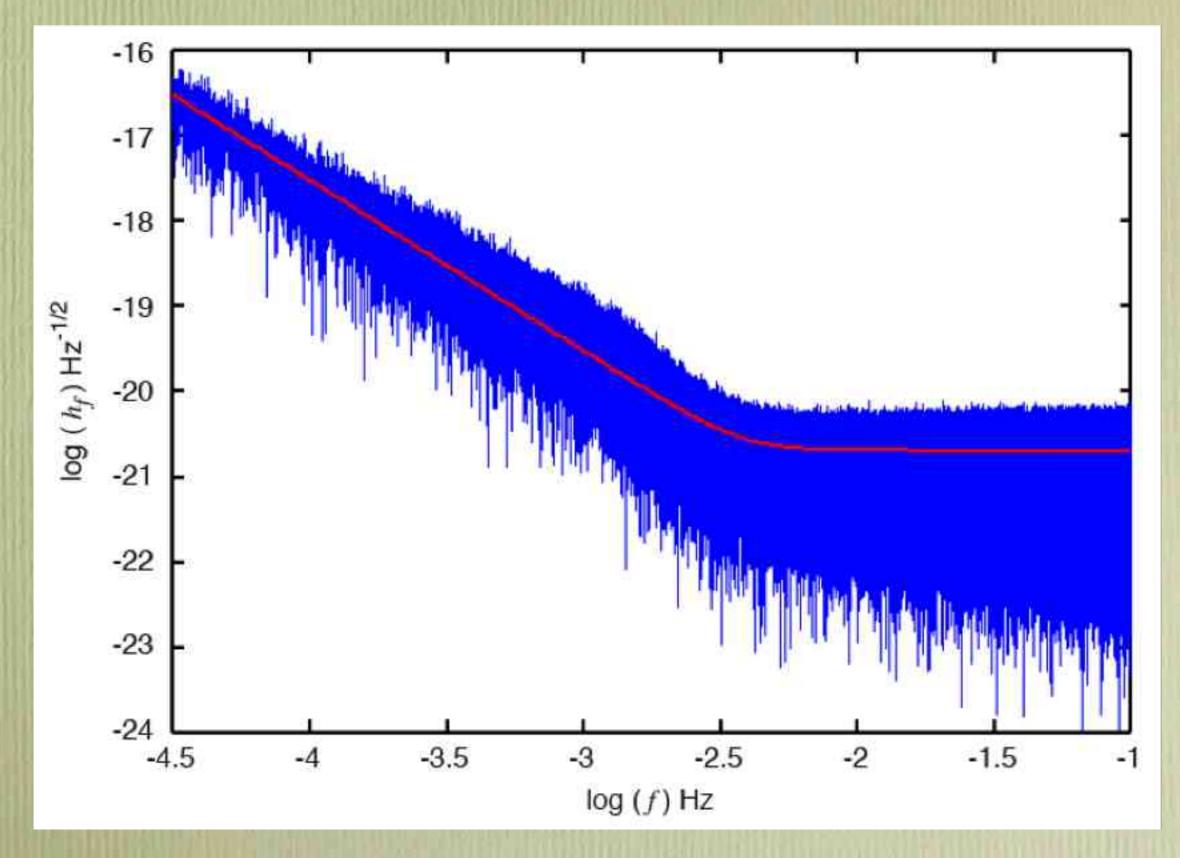
Source Density II



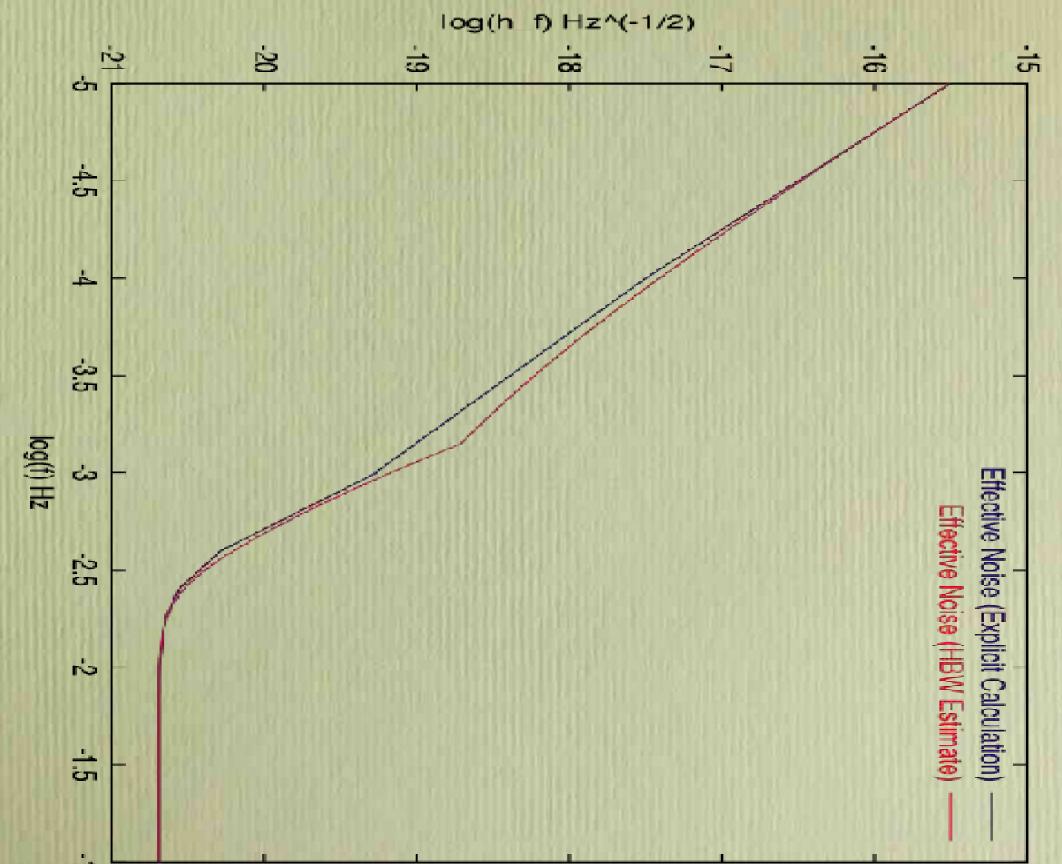
Source Density II



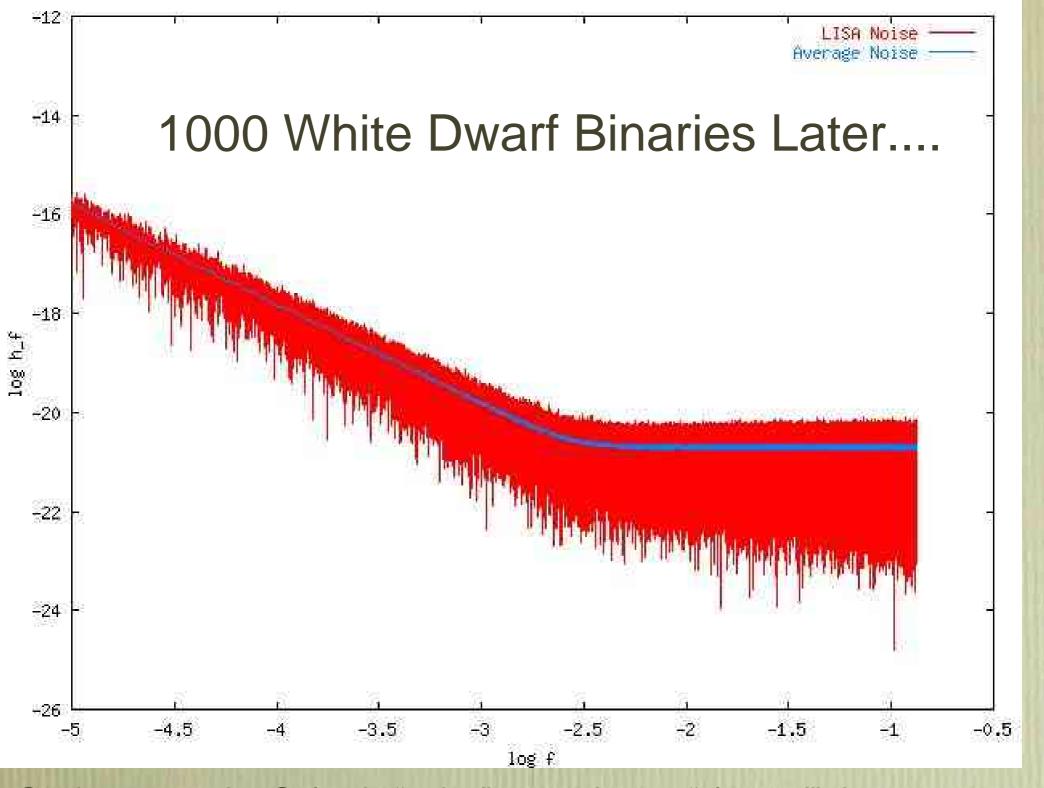
Bright Sources Removed



Revised Confusion Level



Throwing the Baby out with the Bath Water



Can't remove the Galactic "noise" to produce a "cleaned" data stream

How do we do this?

Optimal Data Analysis = Matched Filtering

 ΛT

$$s(t) = h(t) + n(t) = \sum_{i=1}^{N} h_i(t) + n(t)$$

Optimal Filter includes all N resolvable sources

Source parameters $\vec{\lambda} = \vec{\lambda}^{(1)} + \vec{\lambda}^{(2)} + \dots$

Parameters per source $d_i = 7 \rightarrow 17$

Parameter Space Dimension $D = \sum d_i \sim 40,000$

Direct Search Cost $\sim \text{const.}^N$

Multi-Source Searches

Not as bad as it sounds...

 $(h_i|h_j) \approx 0$ for galactic binaries *i*, *j* separated by $\sim \mu Hz$But still pretty bad

Techniques that help:

Fast Source Identification

- *F* Statistic Jaranowski, Krolak & Schutz (1998), Krolak, Tinto & Vallisneri (2004)
- Demodulation Cornish & Larson (2002), Hellings (2003), Cornish (2004)

Sub-Optimal Initial Guess

- gCLEAN (iterative) Cornish & Larson (2003)
- Markov Chain Monte Carlo (stochastic) Christensen, Dupuis, Woan & Meyer, (2004)
- Genetic Algorithms (Darwinian)

Refinement of Initial Guess

- Linear Least Squares Cornish, Hellings & Rubbo (2004)
- Simulated Annealing

Signal Analysis 101

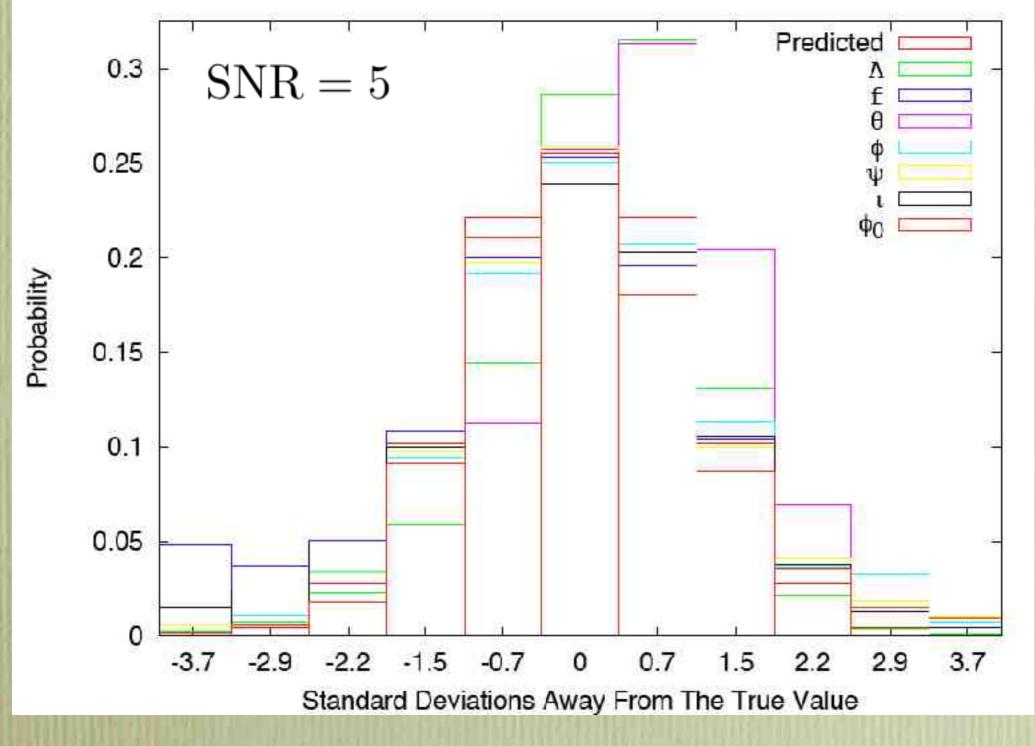
Log Likelihood

$$\mathcal{L}(\vec{\lambda}') = \log L(\vec{\lambda}') = (s|h') - \frac{1}{2}(h'|h')$$
$$(x|y) = 2 \int \frac{\tilde{x}\tilde{y}^* + \tilde{x}^*\tilde{y}}{S_n(f)}$$

Expectation Values at Maximum Likelihood

$$\langle \mathcal{L}(\vec{\lambda}) \rangle = \frac{1}{2} (h|h) = \frac{1}{2} \text{SNR}^2$$
$$\left\langle \frac{\partial \mathcal{L}(\vec{\lambda})}{\partial \lambda_i} \right\rangle = 0$$
$$\left\langle \frac{\partial^2 \mathcal{L}(\vec{\lambda})}{\partial \lambda_i \partial \lambda_j} \right\rangle = -(h_{,i}|h_{,j}) = -\Gamma_{ij}$$

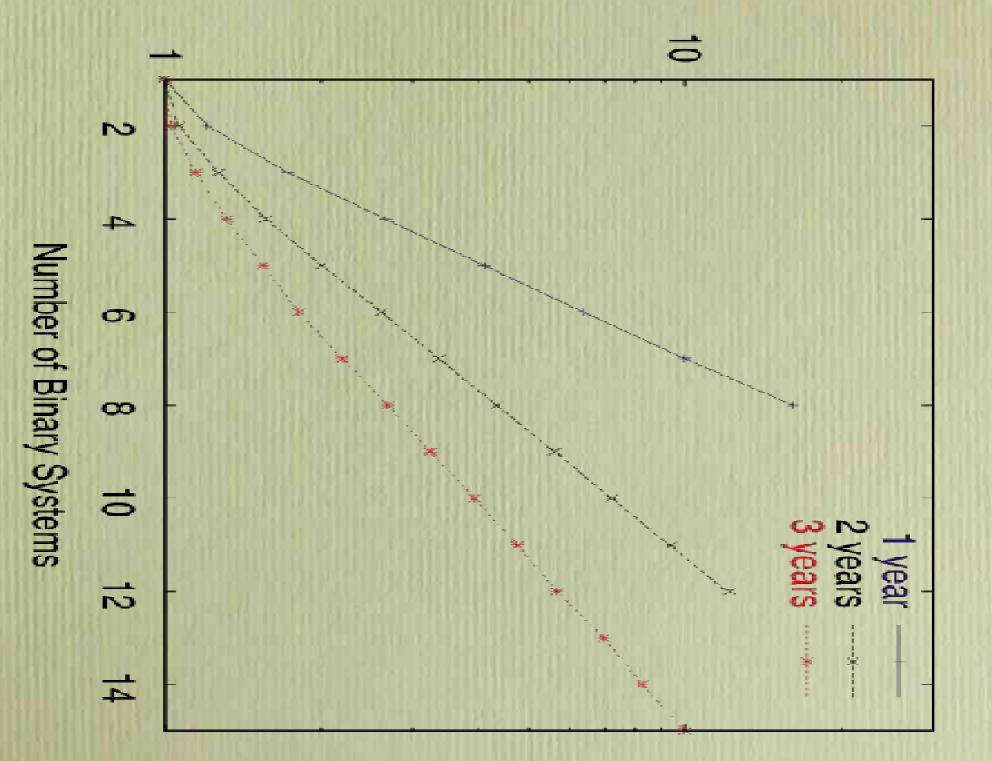
Parameter Uncertainity Estimation



Fisher Matrix Prediction v.s. Template Matching

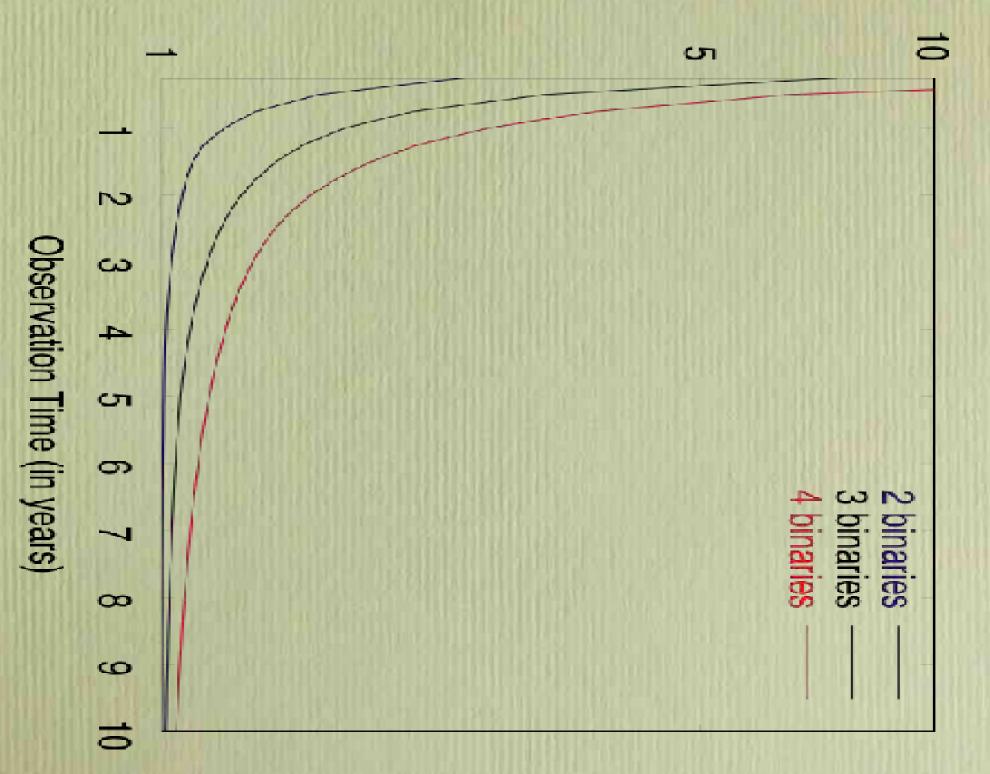
Source Confusion

Uncertainty Ratio



Source Confusion

Uncertainty Ratio



F - Statistic

$$s(t) = \sum_{i=1}^{4} a_i(A, \psi, \iota, \varphi_0) A^i(t; f_0, \theta, \phi)$$

$A^1(t)$	=	$D^+(t;\theta,\phi)\cos\Phi(t;f_0,\theta,\phi)$	a_1	=	$A/2\left(\left(1+\cos^2\iota\right)\cos\varphi_0\cos 2\psi-2\cos\iota\sin\varphi_0\sin 2\psi\right)$
$A^2(t)$	=	$D^{\times}(t; \theta, \phi) \cos \Phi(t; f_0, \theta, \phi)$	a_2	=	$-A/2\left(2\cos\iota\sin\varphi_0\cos 2\psi + (1+\cos^2\iota)\cos\varphi_0\sin 2\psi\right)$
$A^3(t)$	E.	$D^+(t;\theta,\phi)\sin\Phi(t;f_0,\theta,\phi)$	a_3	=	$-A/2\left(2\cos\iota\cos\varphi_0\sin 2\psi + (1+\cos^2\iota)\sin\varphi_0\cos 2\psi\right)$
$A^4(t)$	-	$D^{\times}(t; \theta, \phi) \sin \Phi(t; f_0, \theta, \phi)$	a_4	=	$A/2\left(\left(1+\cos^2\iota\right)\sin\varphi_0\sin 2\psi-2\cos\iota\cos\varphi_0\cos 2\psi\right)$

 $N^i = (s|A^i)$ Four filters per source, depend only on three parameters θ_0, θ, ϕ

$$N^{i} = a_{j}(A^{j}|A^{i}) = a_{j}M^{ji}$$
$$\mathcal{F} \simeq \log L = \frac{1}{2}M_{ij}^{-1}N^{i}N^{j}$$

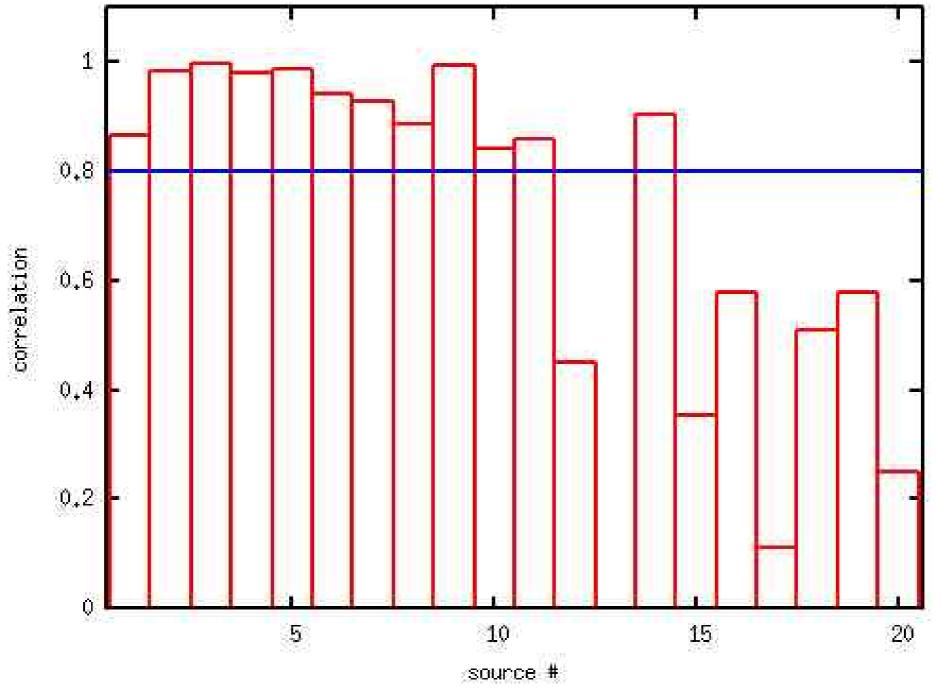
Jaranowski, Krolak & Schutz, Phys.Rev.D58:063001,1998

Naive application of *F* - Statistic

QuickTime^a and a GIF decompressor are needed to see this picture.

Sequential Removal, Brightest to Dimmest

Appearances can be Deceptive



Only 12 real sources in fit. Fake sources all hag NR > 6

Knowing when to Stop

More sources = More parameters = Better Fit

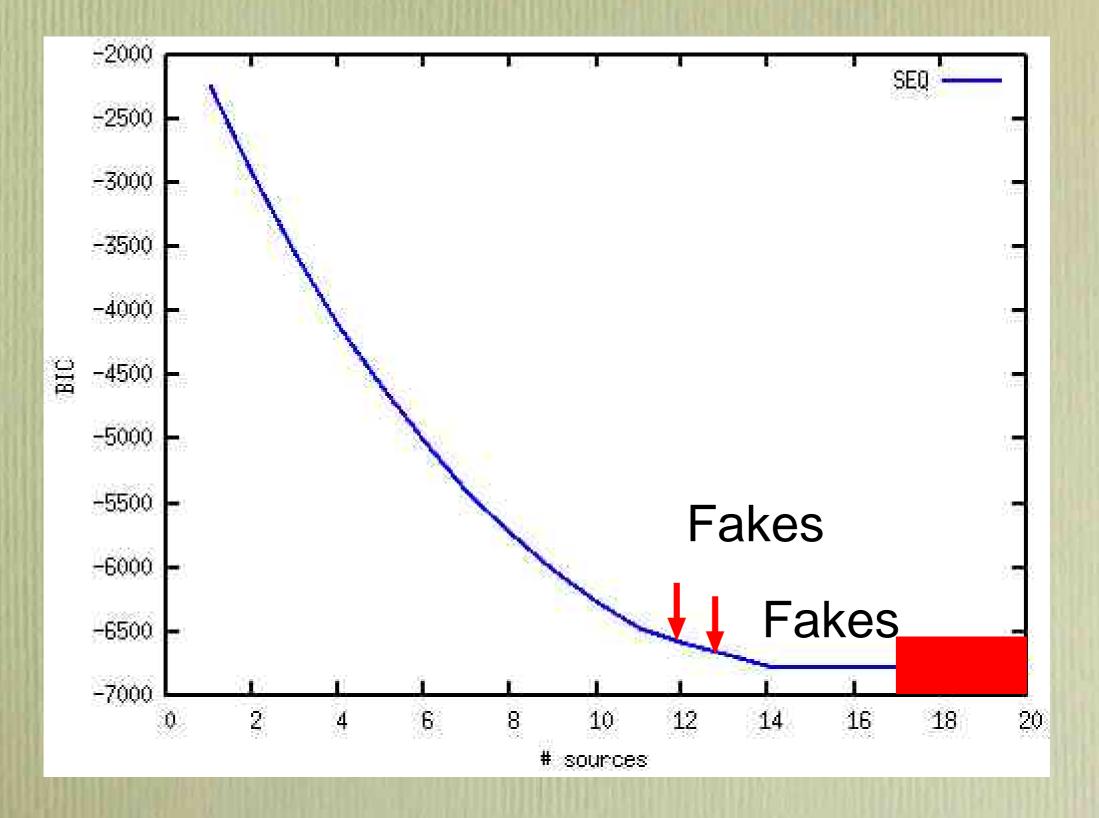
Question: If a filter built from 1000 Galactic Binaries gives same log likelihood as a filter describing one SMBH binary, which solution do we favour?

BIC = $-2 \log L + D \log \mathcal{N}$ (Schwarz 1978)

Penalty for using extra parameters

Example: Galactic Binary @ ∞ mHz BIC $\simeq -\text{SNR}^2 + D \log \mathcal{N}$ $\mathcal{N} \simeq 2 \times 2 \times 10$ D = 7Require BIC $< -2 \Rightarrow \text{SNR} > 5.3$ Stops the Dwarfs from eating the Giant

BIC for Sequential Removal

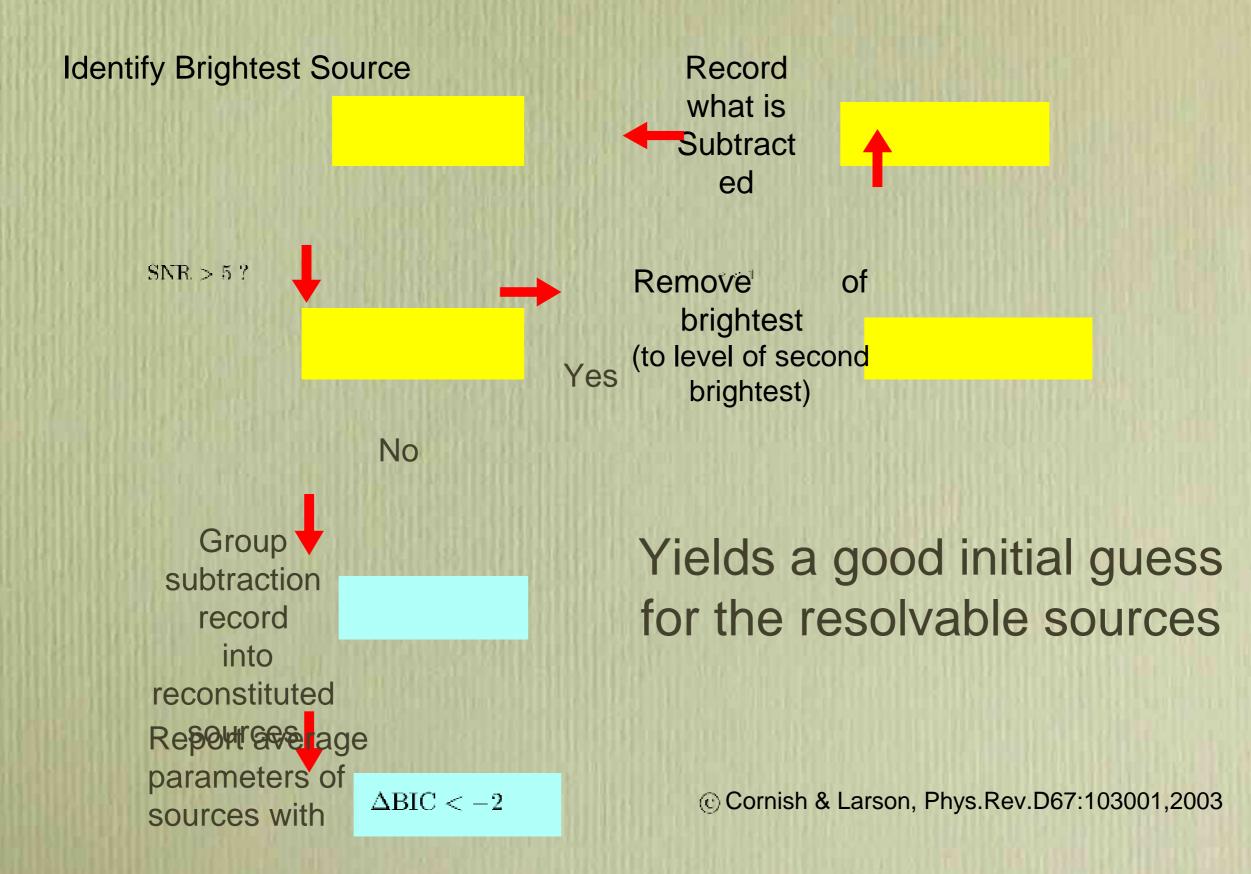


How do we do better?

Iterative Initial Guess

Global Re-Fit of Initial Guess

gCLEAN[©]



Linear Least Squares Refinement

Initial Guess \Rightarrow Optimal Solution

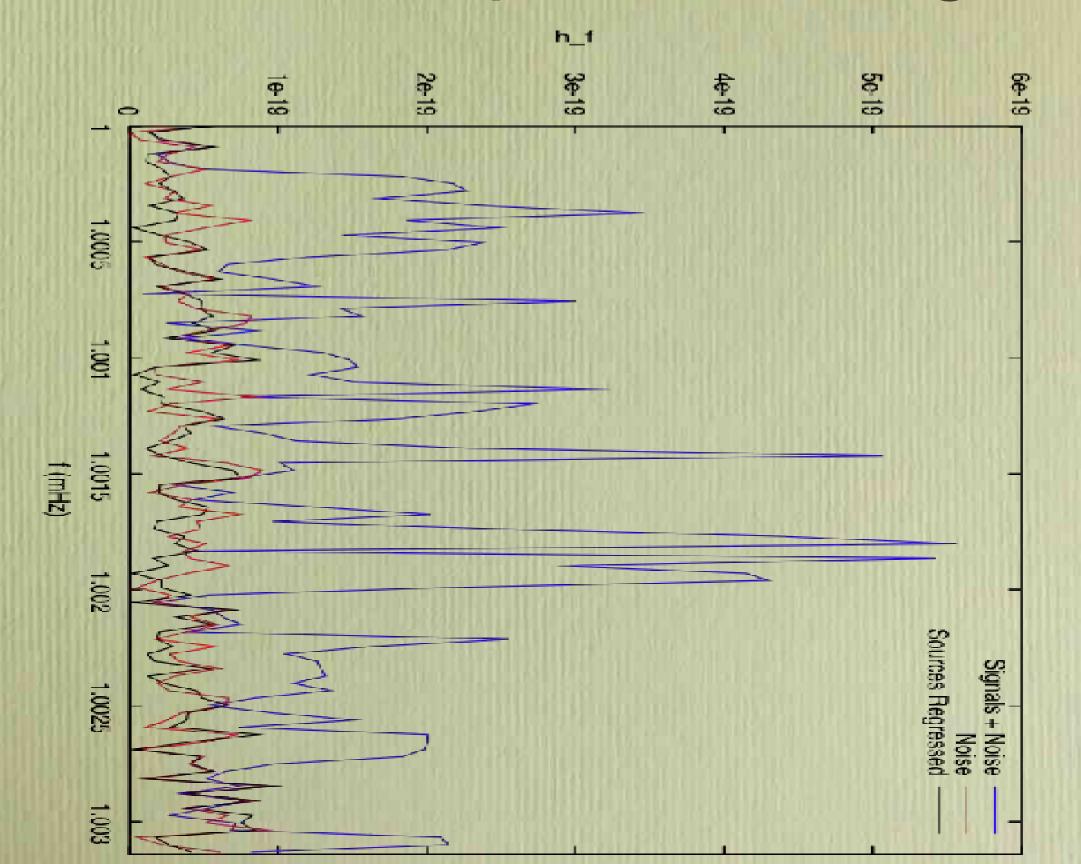
$$\Delta s(t) = s(t) - h(t) = \frac{\partial h(t)}{\partial \lambda_i} \Delta \lambda_i + z(t)$$

Minimize the residual (z|z)

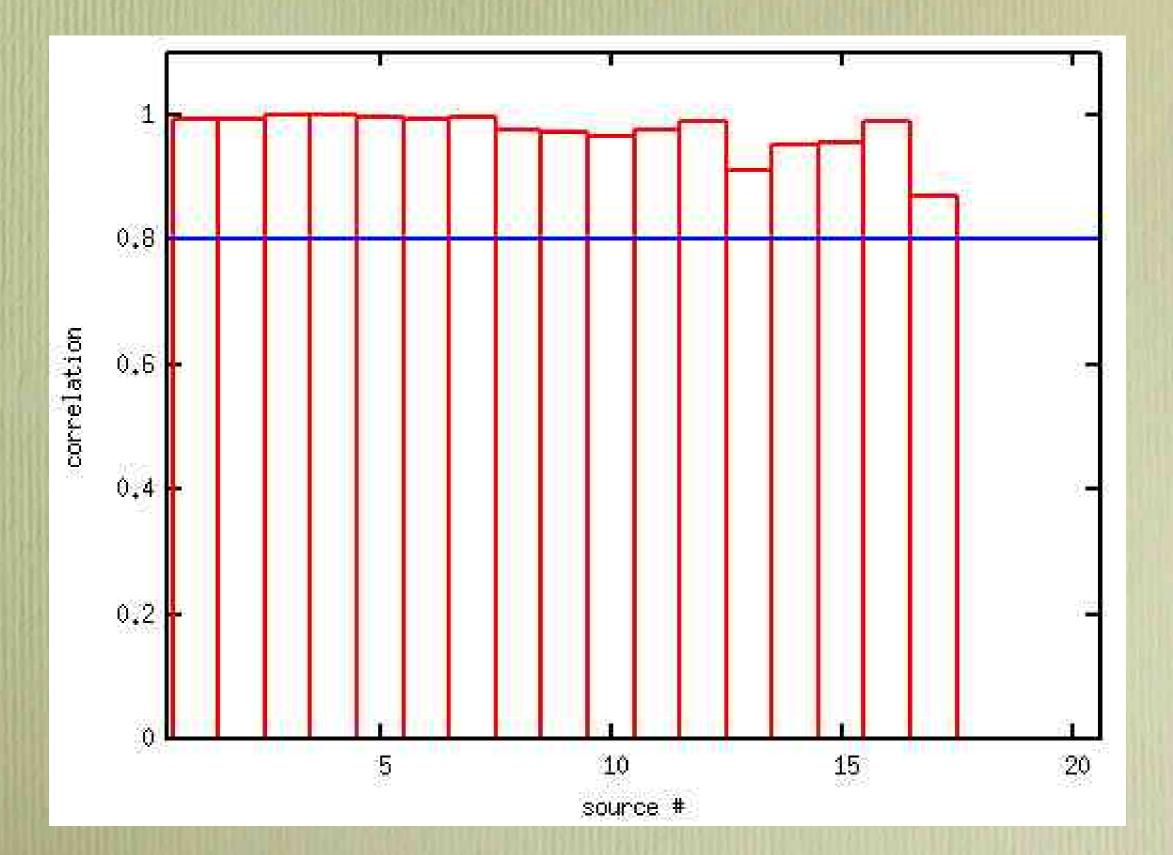
Solution: $\Delta \lambda_i = \Gamma_{ij}^{-1} (\Delta s | \partial_j h)$

 Γ_{ij} full $D \times D$ dimensional Fisher matrix

Least Squares Fitting



Quality of Fit



Current Work

- Full simulation using gCLEAN + LSF
- MCMC
- Including SMBH binaries