LTP Interferometer - Noise Sources and Performance

David Robertson, Harry Ward, Christian Killow, Jim Hough - University of Glasgow for the LTP Optical Bench EM Team
Pre-investigations

The pre-investigation work had three main aims:

- Build a prototype optical bench using hydroxide catalysis bonding
 - Gain experience in the issues involved
- Install the bonding technology in RAL for EM build
 - Learn from prototype work
- Demonstrate the stability performance of the prototype optical bench
 - Also demonstrate the performance of LTP heterodyne interferometry
Prototype optical bench

- **Aim** - demonstrate the suitability of hydroxide catalysis bonding for the construction of the LTP and LISA optical benches
 - Build a test interferometer using hydroxide catalysis bonding
 - Study the procurement and alignment issues involved in constructing a bonded interferometer
 - Demonstrate the displacement stability at as close to the LTP displacement noise goal as possible

- **Approach**
 - Rigid interferometer – no moveable mirrors
 - Non-polarising heterodyne interferometer
 - Simplest possible layout
 - Zerodur baseplate, fused silica beamsplitters and mirrors
Heterodyne interferometry

- Original laser frequency shifted by 2 acousto-optic modulators (aoms)

- This generates 2 laser beams with a known frequency offset $\Delta \nu$

- At each photodiode we get a signal at a frequency $\Delta \nu$

- Output signal is the phase difference between R and M of the signal at $\Delta \nu$
Interferometry tests

Optical bench in vacuum tank

Phasemeter

Laser beam preparation bench

LISA Symposium, ESTEC, July 2004
Stopwatch Phase Measurement System

- **Aim**
 - Verify performance of optical bench
 - Simple lab based system
- **Want to measure phase of** M relative to R
- Digitally count number of cycles of a fast clock during t and T, signal $\phi = 2\pi t/T$

- **Potential noise sources**
 - Quantisation noise can be sufficiently low ($\sim 10^{-6}$ cycles/$\sqrt{\text{Hz}}$, ie $\sim 1\text{pm}/\sqrt{\text{Hz}}$) with a fast clock frequency of $\sim 100\text{MHz}$ and a heterodyne frequency of $\sim 100\text{kHz}$
 - Shot noise is irrelevant with the mW laser powers that are likely to be used
 - Care needs to be taken to keep phase changes in the analog electronics at a sufficiently low level

LISA Symposium, ESTEC, July 2004
Early interferometer performance

- Significant coupling of laser frequency noise
 - Coupling due to slight inequality of path lengths in the interferometer
 - Effect can be eliminated in post-processing or by laser frequency stabilisation
 - Some excess noise peaks remain around a few mHz

Excess noise “plateau” at <100mHz
Laser frequency stabilisation

- Laser frequency noise significant at sensitivities close to LTP interferometry goal
 - Implement a laser frequency stabilisation control loop
- Sense using unequal arm length interferometer
 - Error signal from phasemeter (data rate 10 kHz)
 - Very simple logic on digital input signals to phasemeter produces output error signal (one inverter and 2 XOR gates)
 - Analog feedback to laser temperature and piezo on laser crystal
- Frequency noise reduced by >100@1Hz
 - Reduces frequency noise to negligible levels at all measurement frequencies
- Bandwidth few*100 Hz
 - Could be greater, but this is already sufficient
Performance with laser frequency stabilisation

- Green trace is with laser frequency stabilised but with a frequency modulation peak at 0.9 Hz
- Similar performance to laser frequency noise subtraction in post processing
- Temperature driven noise at 3mHz?
- Excess noise “plateau” at <100mHz
Optical and electrical heterodyne signals

Phase locked oscillators:
- 80.00 MHz
- 80.01 MHz
- 10 kHz

Optical bench:
- Photodiode output signals at 10 kHz
- Signal
- Freq.-noise
- Reference

Piezo drive

Electrical signal at 10 kHz

LISA Symposium, ESTEC, July 2004
Stabilise phase of reference heterodyne

- Sense phase difference between electrical heterodyne and optical heterodyne
 - Electrical heterodyne into another phasemeter channel
 - Error signal from phasemeter (data rate 10 kHz)
 - Same simple logic as for frequency stabilisation
- Stabilise optical heterodyne phase by feeding back to piezo driven mirror directing light into one optical fibre
 - Loop bandwidth 10Hz
 - Probably limited by mechanical resonance
 - Residual fluctuations $<\pm 20$ degrees
Results with fibre path stabilisation

- Differential fibre path lengths stabilised
- Laser frequency stabilised
- Meets LTP interferometry goal over almost complete measurement band
- Temperature driven noise around few mHz
Why does stabilising the reference optical heterodyne to the source oscillator make a difference?

- Generation of spurious signals on the outputs of the photodetectors
 - at the heterodyne frequency
 - phase locked to the source oscillator
 - Unstable with respect to the optical heterodyne
Excess noise coupling

- Excess noise at <0.1 Hz caused by a combination of:
 - Spurious signal at the heterodyne frequency
 - Changing relative phase of optical and electrical heterodynes ("fibre" noise)
Possible causes of spurious signal-1

- Direct electrical interference into photodiode front ends at the heterodyne frequency (10 kHz)
 - Excluded after investigation

- Amplitude modulation of the diffracted light observed at the 80MHz rf frequency and multiples thereof, typically $\sim 10^{-3}$
 - In principle these signals should not produce 10kHz beat signals but undesired nonlinearities in the photodiode front end may allow the generation of a 10kHz beat
 - Such additional beats only present when the beams are recombined and are therefore invisible, being masked by the much larger heterodyne signal
Possible causes of spurious signal-2

- Electrical cross talk of rf signals resulting in each AOM being driven by a small amount of the rf signal intended for the other AOM
 - Observed as a 10kHz beat in light from a single AOM
 - ~90dB below main heterodyne signal size
 - Does not seem to be straightforward to further reduce this coupling significantly in our experimental configuration

Crosstalk at around -120dB

LASER

AOM

80.00 MHz

AOM

80.01 MHz

LISA Symposium, ESTEC, July 2004
Differential fibre-path stabilisation

- First attempt
 - PZT driven mirror on beam preparation bench
 - Works, but not suitable for LTP

- Second approach - fibre heating
 - Resistance wire wrapped round fibres
 - Works with lower bandwidth (4 Hz)
 - Currently adopted solution for LTP

Optical fibre (blue cladding)
Nichrome heater wire
Results

- Meets LTP and LISA stability goals over the whole frequency range...
- ...apart from some excess noise around few mHz
- Temperature driven effects
 - Consistent with expected effects in transmissive optics
 - Bench stability in lab. ~mK/rt(Hz)
 - LISA stability µk/rt(Hz)

Performance measured using Hannover phasemeter
Conclusions

- Prototype optical bench built
 - Lessons learned for EM build
 - (See posters on LPF EM Optical Bench)
- Optical bench stability
 - LTP and LISA
- LTP interferometry demonstrated
 - Laser frequency stabilisation
 - Unexpected noise source identified
 - Amelioration strategy demonstrated
 - Fibre path feedback
 - Necessary for performance demonstration on EM
- LTP compatible feedback demonstrated
 - Temperature feedback