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Why BBHSs i1s an interesting problem?

* Most of the galaxies host SMBH in their cores.
The most likely and energetic event isthe
plunge/ inspiral of normal stars.

e The two body problem remains one of the
most interesting theoretical onesin GR.

» The comparable masses case in its most interesting
stage (in the plunge radiates as much as in the whole
binary history) requires solving the full nonlinear GR
equations. Thisisavery difficult problem to solve!

* The small mass ratio regime seems more accessible
to be solved using perturbative methods.

So far so good...
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The Problem

« Compute the metric perturbations for a particle orbiting a black hole from
the field equations with a source term

G, [Nl = Ty =m [u, u, §[xe -x2 (1)]/v/-g dt

« Compute the corrected trgectory of the particle from the geodesic equation

(d2xH/dt?) + M 5 (dx?/dT) (dxP/dT) =0

 The problem is that the metric near the particle has the form
h,,~m7[x®-xa(t)

» We need to regularize the problem to extract any meaningful result.
This proved to be one of the most challenging problems for 25 years,

Until...
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The Solution |

Mino, Sasaki & Tanaka (1996)
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Matched asymptotic expansion:
Consistency of the matching in
a buffer zone leads to equation

of motion
Perturbed background Rt Buffer zore
of larger BH
*Alternative derivation via Brehme-DeWitt approach:
: i 3

Derive “conserved” rank-two symmetric tensor
i —

Integrate its divergence over the interior of the
world tube surrounding the particle to derive the

equations of motion
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The Solution I

Quinn & Wald (1996)

o  Axiomatic approach

1. Comparison axiom: Identifyu*and a*for Pin(M,g,,)and P (M,g,,)
via Riemann normal coordinates

fr-fr=1lim_, {[(%V“haﬁ' VBh“a)'[(% V“haB' VBhHO‘)]}

2. Flat spacetime axiom:

If (M,g,, ) IsMinkowski spacetime the perturbed metric hg,
IS half advanced and half retarded solution

Ny [h*og 3 hgel then muvVO (u)=fH=10.
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The Solution

MiSaTaQuWa - Self -Force

ﬁy — a a
(0= mO] y(X)] = Fp(®0 + Fg(x
— N
from from Scattering
propagation inside light-
— Fa”(X — Xo) along light cone cone

— T_ 1 -
Fptail =M UG UB f—oo [E |7|J-G GBV6 VBG J y5
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The Problems of the solution

« How to implement this regularization?
» How to compute the full and singular metric perturbations?
 All in the Harmonic Gauge

Mode Sum Regularization scheme (Barack & Ori, Burko, Lousto, Mino ...)

T | = Multipole contributions finite at the
F=lim (Ffull(x) Fdirect(x))

X - z(0) | particle, Ff:m ; Fdlirect(l — 00) |

!
F=Y(Fu@-ATL-B-C/1)- Y (Fiw(© - AD-B-C/I)
I |\ ),
o

*“Regularization parameters” A%, B4, C# D# derived analytically by local analysis

(Kerr background)
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The applications:

Headon

 For Schwarzshild background we
can decompose into (I,m) multipoles
 The metric perturbations are finite e

for each (I,m) and can be computed
in the RW gauge

o)

(eMAL L F

e The sum diverges: o
Use mode regularization scheme
» Analytic form of (I=0,1) multipoles 025
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* Local analysis can be pushed to higher order in 1/1, giving ahalytic

approximation for the self force. For example:

15 o E2
- m
16 r2

erl -
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The applications: Circular orbits

e Multipole decomposition

« Compute metric perturbations in the RW gauge
 Transform the ‘force’ into the Harmonic gauge
e Compute the ISCO

Radiation
reaction

® I

It didn’t work for us: Thisisthe ‘so called’ gauge problem...
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New Results:
The solution to the problems of the solution

Solve the field equations of GR directly in the Harmonic gauge! (Barack)

Linearize Einstein’s equations in perturbation h,s(z) about BH background g¢,sz. Take

source to be a point particle moving on a geodesic & = 1,(T) of gap. Get

DEM; + QR'HQM,:EE_:W + gﬂﬁﬂ'!wyw — 29.' WRF(':‘-'EV 8)

e
— —1611';::[ (—g)~'2 642" — 2 (T)uatp AT = Sass

-0

where

_ 1
hiag = hap — Eﬂmﬂh'

Impose Harmonic gauge condition,
¢ hapey = 0.

Get

Dﬁaﬁ -+ QR"LQ”'I@RW = Sap
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New Results:

The solution to the problems of the solution

AD0 50 O

Benefits:

Energy flux (Circular orbit at r;=7.9456M)

=2 m=1
& A
! m|Ours: Poisson's: Martel's:
t-lomain, fram b s | f~domain, fom o | f-domain, fom o
T
o | 3 1 |81636e—07 8,1633—07 [0.00%]|8.1623—07 [0.02%]
R
: 3 2 |2.5246e—07 2.5190—07 [0.195]|2.5164e—07 [0.36%]
| 1 [R3R25—13 8.30560—13 [0.16%] | 8.3507e—13 [0.38%]
. / 3 [5.7828-—08 5.7751e—08 [0.13%][5.7464e—08 [0.63%]
,\
N F;
Do 5 2 |2.TROTe—12 2, TR6e—12 [0.00%] [ 2.758Te=12 [1.1257]
{ | ;
L1 4 |1.2296e—08 1.2324c—08 [0.23%] | L.2193-—08 [0.84%]
v gl
50 100 150 20 250 300
M

*\Work directly with the variables to compute the force (only first derivatives needed)
Field equations have less singular source terms (only Dirac’ s deltas)
*Regularization parameters already computed (no gauge problem)
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New Problems: Second order perturbations

» Consistency requires to compute second order perturbations
e Harmonic first order gauge is AF. Convenient to use in the
second order Teukolsky Equation to compute waveforms

 The problem still needs regularization

Rosenthal & O Distance from the world line

DIhM=89[3(x-x))] ;. WDy qmonic ~ €1+ O(E%) ;

D[h@]=SA[V h® -V h®, h®) -¥2h1)] O(e2)

Non integrable terms

Solution for the scalar field: ¢2) =y +q@,

0

7 =%UG“(XI Z(T))dfj L@, = —J-(p‘l)R(r)Gret(xl z(r))dr

—00
—00
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New Results: 18PN! (Hikida et al.)

§ 5 Simple case (Schwarzschild + Scalar + Circular)
Comparison with previous results

The regularized self-force obtained by Detweiler et al. is

FR = 1.37844828(2) x 107>

(ﬁ] = IOM).

The most accurate self-force in our calculation is
FR =1.378448203 x 107> (ry = 10M).

coincidence at the accuracy 107{-8}!!
Table: the r-component of the self-force

PN order

FR(ry = 6M)

FR(ry = 10M)

FF(F[) —- ZOM)

4
6
8
10
12
14

16

18

—3.698897009 x 10~*

3.900997486 x 1072
1.469034988 x 10~*
1.634644402 x 10~
1.665705633 x 10~
1.674516681 x 10~
1.676513985 x 10~
1.677456783 x 10~

5.438965544 x 1078
1.215734502 x 107>
1.370724270 x 1072
1.377874928 x 1073
1.378392510 x 1072
1.378443247 x 107

378448203 x 1022

4.009204942 x 1077
4.900744665 x 1077
4.937547086 x 1077
4.937898906 x 107
4,937905702 x 1077
4.937905862 x 1077
4.937905865 x 1077
4.937905865 x 1077




