### Imperial College London

Test Mass Charging on LISA Pathfinder (and particle spectrum variations) Peter Wass, H. Araújo, D. Shaul, T. Sumner, J. Quenby J.B. Blake, P. Slocum



#### Talk outline

- LISA Pathfinder test mass charging simulation geometry and results
- Charging effects of gravitational compensation masses
- Galactic cosmic ray fluctuations
- Particle monitor for LISA Pathfinder

# LISA Pathfinder charging simulations

- Simulations in Geant4 identical to LISA
  - Physics models
  - Radiation environment
  - Solar minimum and maximum conditions
- Geometry
  - ~400 implemented volumes
  - ~80% of total s/c mass

#### **Inertial Sensor**

Based on model from CGS





14 July 2004

Imperial College



#### Spacecraft

Model from EADS
 Astrium UK

Imperial College

London

 Components outside LTP inc DRS modelled as black box of correct mass and size



#### Imperial College

### Charging results

| primary  | solar    | GCR flux                    |      | timeline                           |           |      |           |
|----------|----------|-----------------------------|------|------------------------------------|-----------|------|-----------|
| particle | activity | $\Phi$ , /s/cm <sup>2</sup> | Φ, % | N <sub>0</sub> (x10 <sup>6</sup> ) | CPU, days | T, s | $N_0/N_Q$ |
| protons  |          | 4.29                        | 92.0 | 142.6                              | 143       | 235  | 2096      |
| He-4     | min      | 0.315                       | 6.8  | 22.0                               | 22        | 491  | 958       |
| He-3     |          | 0.0591                      | 1.3  | 33.1                               | 33        | 3958 | 1010      |
| Total    |          | 4.66                        | 100  | 197.6                              | 198       | -    | 398       |
| protons  |          | 1.89                        | 91.9 | 59.4                               | 59        | 222  | 1758      |
| He-4     | max      | 0.142                       | 6.9  | 8.8                                | 9         | 440  | 798       |
| He-3     |          | 0.0236                      | 1.1  | 31.8                               | 32        | 9524 | 874       |
| Total    |          | 2.06                        | 100  | 99.9                               | 100       | -    | 337       |

- Simulations run at CERN LSF cluster
- ~1 CPU Year
- 2×200s timelines

- Solar minimum
  88+e/s 35e/s/√Hz
- Solar maximum
  43+e/s 28e/s/√Hz
- Subject to low energy effects 14 July 2004

| primary                  | solar    | ТМ 0   |                      |                         | TM 1   |                      |                         |  |  |
|--------------------------|----------|--------|----------------------|-------------------------|--------|----------------------|-------------------------|--|--|
| particle                 | activity | R, e/s | σ <sub>м</sub> , e/s | S <sub>R</sub> ,e/s/√Hz | R, e/s | σ <sub>м</sub> , e/s | S <sub>R</sub> ,e/s/√Hz |  |  |
| protons                  |          | 71.7   | 1.4                  | 31.3                    | 68.9   | 1.4                  | 30.3                    |  |  |
| He-4                     | min      | 14.2   | 0.5                  | 15.5                    | 13.7   | 0.5                  | 15.2                    |  |  |
| He-3                     |          | 2.22   | 0.06                 | 5.0                     | 2.06   | 0.06                 | 5.5                     |  |  |
| Total                    |          | 88.1   | 1.5                  | 35.4                    | 84.7   | 1.5                  | 34.3                    |  |  |
| protons                  |          | 33.5   | 1.1                  | 24.1                    | 34.8   | 1.2                  | 25.1                    |  |  |
| He-4                     | max      | 7.1    | 0.4                  | 12.7                    | 7.2    | 0.4                  | 12.1                    |  |  |
| He-3                     |          | 0.85   | 0.03                 | 4.2                     | 0.85   | 0.03                 | 1.1                     |  |  |
| Total                    |          | 41.4   | 1.2                  | 27.6                    | 42.9   | 1.3                  | 8.2                     |  |  |
| 5th LISA Symposium_ESTEC |          |        |                      |                         |        |                      |                         |  |  |

# Gravitational compensation (GC)

- Gravitational compensation necessitates positioning of large amounts of mass very close to the TM, (within the vacuum enclosure)
- Potential to cause increased charging through hadronic showers.
- Mass definition from M. Armano, Trento

#### Simulations

• GCR protons solar minimum with and without GC masses

 Charging rates remain the same within errors ~70+e/s



Time, s

Imperial College

London

#### Simulations

- Charging spectra do differ
  - Fewer low energy protons ~100MeV reach
     the TM – stopped in the GC masses
  - Increased charging from ~1GeV primaries caused by hadronic showering in the GC



Imperial College

London

## GCR Variability

Data from POLAR spacecraft

Imperial College

London

- Highly elliptical earth orbit
- **HIST** instrument sensitive to high energy cosmic rays
  - Large scintillator
  - High count rates
  - Good time resolution
  - No spectral information

14 July 2004





#### Future work

- Analyse and check higher resolution data
- Quantify noise and/or signals in the LISA bandwidth due to charging fluctuations
- Look for correlations with interplanetary magnetic field

Imperial College

ondon

#### Particle monitor

- Short term fluctuations of GCR flux and SEP events may cause disturbances that could mimic a GW signal in the LISA bandwidth
- Led us to recommend strongly that a particle monitor be on board LISA Pathfinder
- Remove spurious signals caused by flux variability
- Geant4 simulations have led us to identify several requirements as input for IEEC Barcelona collaboration design

Imperial College

ondon

#### Particle monitor

- Recommendations for:
  - Detector layout
  - Count rates

Imperial College

London

- Energy sensitivity
- Spectral sensitivity
- Work in progress



14 July 2004

#### Summary

- Test mass charging rate for LISA Pathfinder is 88+e/s at solar minimum with shot noise 35e/s/√Hz (43+e/s & 28e/s/√Hz at solar maximum)
- Gravitational compensation masses as currently defined do not adversely affect the charging rate
- Galactic cosmic rays show low frequency variations which could lead to disturbances in the LISA bandwidth
- A particle monitor is under development to help mitigate the risks posed to science data by GCR variability and SEP events

14 July 2004

Imperial College

ondon