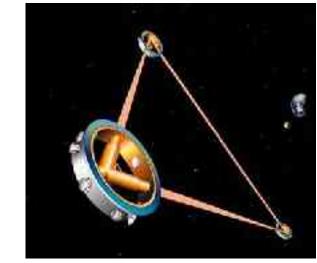


Laser Interferometer Space Antenna

LISA Laser Transponder

Paul McNamara NASA - Goddard Space Flight Center


paulm@milkyway.gsfc.nasa.gov (+1) 301 286 4903

Introduction

Detected power from distant s/c

(assuming ~13% of light lost between telescope and photodetector)

- 1W transmitted through 30cm telescope
 - ~120pW detected on main quadrant detector
 - Shot noise limit ~48µrad/√Hz
- 1W transmitted through 40cm telescope
 - ~375pW detected on main quadrant detector
 - Shot noise limit ~27µrad/√Hz

- Local laser power on quadrant diode ~100μW
- Light from distant s/c has "Top-Hat" intensity profile, local laser has Gaussian intensity profile
- Beams will be co-linear, but may not be superimposed

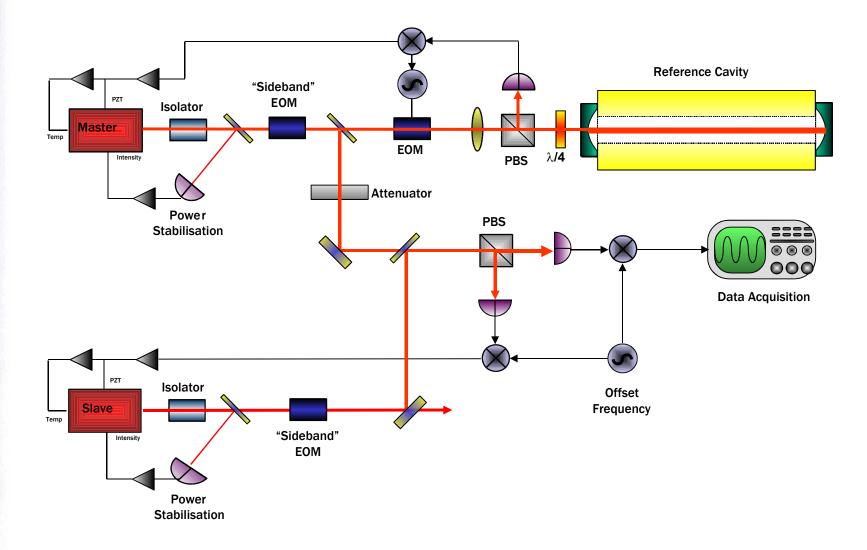
GSFC·JPI

–Depends on whether proof mass is used for pointahead compensation

Experimental Goals

- Demonstrate basic LISA phase locking requirements in lab environment
- Create realistic LISA beams and demonstrate phase locking requirements
 - Addition of phase modulation sidebands
 - Clock, ranging, data
 - Varying Doppler shift

GSFC·JPI


- Different intensity profiles

Sring system to TRL5/6 compatibility

Experimental setup

NASA GSEC-JPL

Experimental Description

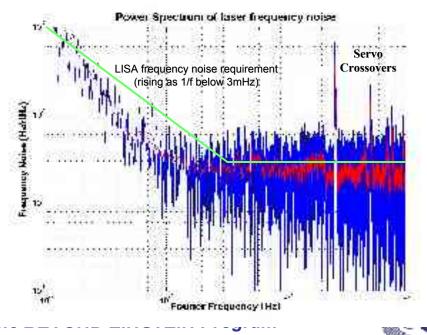
Master laser locked to high finesse, temperature stable, ULE cavity

Master laser attenuated by


- Transmission through high reflecting mirror (~10ppm)
- Leakage through polarising beam splitter cube (500ppm)
- Total attenuation ~5x10⁻⁹

GSFC·JPI

Master Laser Power <u>~13pW</u>



Master Laser

Master laser frequency noise beneath 30Hz/\Hz above 2mHz Frequency reference cavity manufactured from ULE cylinders with fused silica mirrors optically contacted to end faces

Cavity housed in 5 layers of gold coated stainless steel in

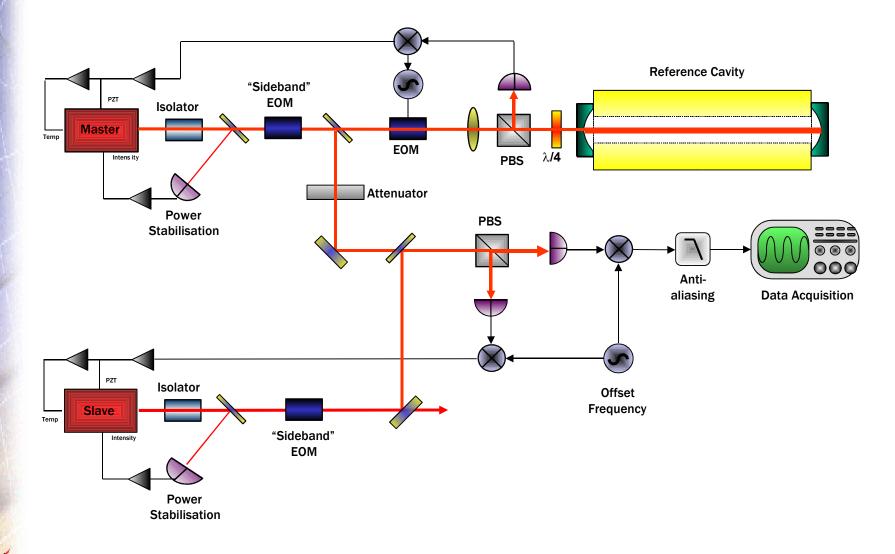
LISA : A Great Observatory in

Experimental Description

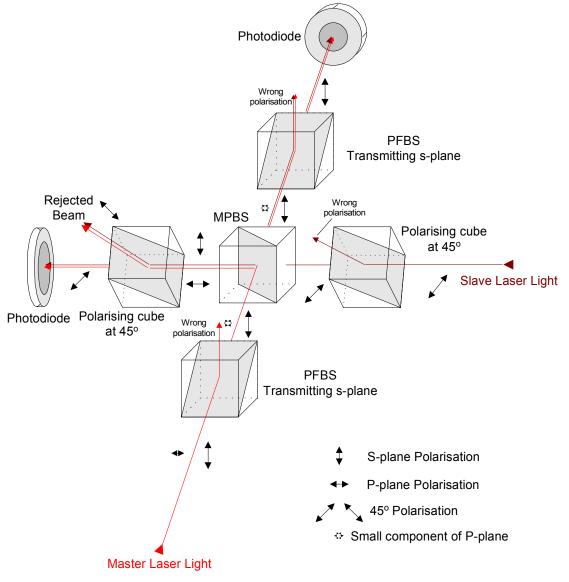
Slave laser free running
Slave laser power ~1mW

Seams combined on polarising beam splitter cube

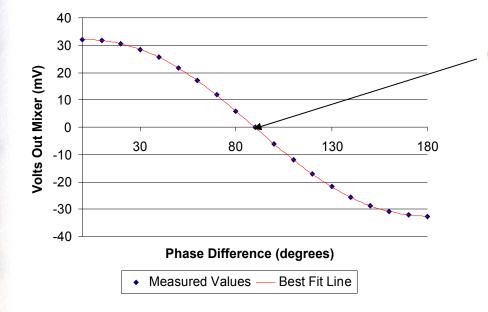
- One port used for in-loop feedback
- Second port used for analysis


GSFC·JPI

Calibrated analogue mixer used as phase meter


Experimental setup

Combining Beamsplitter


LISA : A Great Observatory in the BEYOND EINSTEIN Program

GSFC·JPL

Phase meter

- Scalibrated analogue mixer (SRA-1) used as phase meter
- Low frequency performance limited by temperature induced drift in mixer output

Phase of LO set to be in quadrature with beat signal sing linear part of curve

Initial Phase Locking Results

LISA : A Great Observatory in the BEYOND EINSTEIN Program

GSFC·JPL

Initial Results

Master laser power lower than LISA case

- Master laser power = 13pW
- Laser power attenuated in steps not variable

Shot noise limit for 13pW of detected power 1.3x10⁻⁴rad/√Hz

- Shot noise limit for 30cm LISA case = 4.8×10^{-5} rad/ \sqrt{Hz}
- Shot noise limit for 40cm LISA case = 2.7×10^{-5} rad/ \sqrt{Hz}

Slave laser phase noise is shot noise limited above 0.4Hz

- Further investigations required to reduce low frequency noise

Possible Noise Sources

Solutions Second Sec

- Phase locking beam splitter and photo-detectors are NOT in vacuum
 - Components housed in "box" on optical bench, and optical bench surrounded by plastic sheet to minimise effect of air currents

Solution States in States and S

- Mixers not temperature stabilised

🤏 Laser intensity noise

- Low frequency intensity noise limited by voltage reference stability
- May be limiting noise source at low frequencies

Surther work required to identify limiting noise source

Further work

Solution Investigate limiting noise sources

- Temperature/mixer drift
- Laser intensity noise
- Move critical components into vacuum
 - Remove air currents
 - Better temperature stabilisation
- **Solution** Increase master laser power to LISA level
- Incorporate LISA-type phase meter into system
- Investigate effect of mixing "Top-Hat" and Gaussian intensity profiles
- **Solution States and S**
 - Clock, ranging, data
- Investigate effect of variable Doppler Shift

