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Talk Outline

Electrostatic analyses
(LTP GRS)

- FE model of entire GRS
- FE CM submodels
+ Comparison to // plate

Charging 
Disturbance
Estimates

LISA & LISA PF 
Solar Max & Min

Method to 
Cope with 
Charging 
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More in later talks

Why do TMs charge up?

Solar Flare
(TRACE)

http://imagine.gsfc.nasa.gov
Crab Nebula

Solar 
particles

Galactic 
cosmic rays

• TMs can charge up due to:



Why does charging matter?
Charging of TMs disturbs
their geodesic motion

• Unwanted forces from:
– Coulomb interactions with surrounding 

conductors of GRS
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Coulomb accn:

=> Terms ~∆k => Terms~∆V & V∆k

( ) BVaL ×mQ=Lorentz accn:

EarthUlysses (GSFC)

Sun

IMF– Lorentz interactions as it moves through 
magnetic fields



Main charging Disturbances
1. Acceleration Noise (from fluctuations in: charge, TM position & velocity, 

voltages, magnetic field)
2. Modification of stiffness (from position dependence)
3. Coherent Fourier components (as Q(t) ~t)

x
Stray 
forces

Parasitic 
coupling

Courtesy: S. Vitale
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Move in 1 DOF, Sym =>  ( ) ( ) 2T
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Electrostatic FE model of LTP GRS
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Coulomb accn is capacitance and 
hence geometry dependent

Determine energy in system for given geometry & voltage distribution 
using FE analysis (ANSYS software)

•Change V distribution => capacitances between specific conductors
•Change TM position => capacitance derivatives

“YZ-injection” sensor design*
(LISA PF LTP GRS EM design)

46mm side TM
Gaps:
X face: 4 mm sens
Y face: 2.9 mm sens, 4 mm inj
Z face: 3.5 mm sens, 4 mm inj xz

y

* B Weber et al. ‘03 SPIE

2
2

2

m/F01.015.1 µ±=
∂
∂
x
CT

2
2

2

m/F03.050.2 µ±=
∂
∂
y
CT

2
2

2

m/F03.062.1 µ±=
∂
∂
z
CT

ANSYS (1σ errors#~ 1%)

( ) pF2.07.33 ±== 0kCT
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30%

21%

27%

% > than
// plate

#Shaul & Sumner ‘04 CNME



LTP TM CM: 1 Plunger, 4 stoppers & corresponding TM recesses, per z face.
(Plunger tip level with recessed, injection electrodes during science mode)

• For either set of features,       &        unchanged to 
within 0.4σ & 1.2σ respectively

(1) Pyramidal plunger & baseball-glove-shaped stoppers (ht 1.25mm)*

OR (2) Pyramidal plunger & alternative, elongated stoppers (l’gth 12mm, ht 1mm) *
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Submodel CM => estimate CM influence more accurately

• Figures represent the properties of CM, NOT increase in capacitance when CM 
added as not compared “no CM” case

• Other capacitances will be affected by the inclusion of CM.
• These figures indicate CM level of influence.

• Positions of borders chosen as compromise between model size & distance from RoI
=> minimise effect on couplings of interest.

• BCs were not derived from the full model => avoid confounding models’ accuracies

Plunger Alternative, 
elongated 
stopper

Baseball 
glove 
stopper

Reduced model 
complexity 

(effects results 
only at the ~1% 

level)

Sign depends 
on which side 
of the sensor 
the feature 
is located

( ) ( ) ( ) 2z622660z01.087.17000004.0104081.0 ±+±±±
( ) ( ) ( ) 258333401.010.12000004.0031411.0 zz ±+±±±

( ) ( ) ( ) 2137827903.031.29000009.0087078.0 zz ±+±±±

CTM,CM:



Comparison of CM to full sensor
• Total CTM,CM < 3% CT for both types of stopper 
• Total            < 4% & 9% for CM with bbg stoppers & elongated stoppers

– Only 0.7% from plungers
– In dCT/dk, this gets multiplied by TM offset from the centre of opposing 

features
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=> Need to maintain a high level of uniformityuniformity in the CM surfaces, to 
minimise work function differences, as patch effects could multiply these 
gradients into significant effects

– Similarly, to minimise the CM contribution to stiffness, the mean voltage 
of opposing features should also be minimised. 

• < 9%, 6% & 14% of that of a single z-face, sensing electrode for a 
pyramidal plunger, a bbg stopper & an elongated stopper

(E.g. TM offset of 50µm from the centre of the plungers => contribution of
~3% of that when the TM is offset 10µm wrt entire sensor)
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requirements of the 
retracted CM
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Magnitude of 
Charging 

Disturbances
(using ANSYS results for 

sensitive x-axis)



Charging Rates 

3.87E-165.98E-163.95E-166.22E-16Total noise (ms-2Hz-0.5)
5.95E-171.12E-166.32E-171.22E-16Lorentz noise (ms-2Hz-0.5)
2.25E-164.25E-162.39E-164.62E-16Voltage noise (ms-2Hz-0.5)
3.09E-164.04E-163.07E-163.97E-16Charge noise (ms-2Hz-0.5)
8.02E-181.55E-178.54E-181.70E-17Displacement noise (ms-2Hz-0.5)

-4.93E-09-1.00E-08-5.27E-09-1.11E-08Stiffness, sQx (s-2)
0.280.530.300.57lx(t)  (S/N)

201.38720.38227.35850.87fx(t)  (S/N)
2,351.474,447.512,498.524,833.57ex(t) (S/N)

469746462708Effective charging rate, Reff (+e/s)
9317699191"Worst case" net charging rate assumed (+e/s)
438847100Net charging rate (GEANT GCR) (+e/s)

LISA PF, 
solar max

LISA PF, 
solar min

LISA, 
solar max

LISA, 
solar 
min

For f ~ 10-4Hz charging & Lorentz noise and coherent component estimates largest
~

Within
Limit?

• Assume “worst case” charging conditions:
+ error margin of ~30%~30% on the GEANT GCR charging rates 
+ 60 ++ 60 +e/se/s for kinetic low-energy secondary electron emission

(may ~cancel in the actual sensor)

• Rate of SEP events expected to be low enough that data acquisition could be     
suspended for their duration, but needs to be verified

• [δQ (CHz-0.5) = (2Reff)0.5e/2πf]

LISA: Araujo H et al submitted to Astroparticle Physics, arXiv:astro-ph/0405522.
LISA PF: Wass P et al in preparation.



Coherent Charging Signals 

3.87E-165.98E-163.95E-166.22E-16Total noise (ms-2Hz-0.5)
5.95E-171.12E-166.32E-171.22E-16Lorentz noise (ms-2Hz-0.5)
2.25E-164.25E-162.39E-164.62E-16Voltage noise (ms-2Hz-0.5)
3.09E-164.04E-163.07E-163.97E-16Charge noise (ms-2Hz-0.5)
8.02E-181.55E-178.54E-181.70E-17Displacement noise (ms-2Hz-0.5)

-4.93E-09-1.00E-08-5.27E-09-1.11E-08Stiffness, sQx (s-2)
0.280.530.300.57lx(t)  (S/N)

201.38720.38227.35850.87fx(t)  (S/N)
2,351.474,447.512,498.524,833.57ex(t) (S/N)

LISA PF, 
solar max

LISA PF, 
solar min

LISA, 
solar max

LISA, 
solar 
min

For f ~ 10-4Hz estimates largest
(τ = 1 yr; T = 1day)

~

Within
Limit?

S/N is the ratio of the charging signal to the acceleration noise budget for LISA 

Coulomb signals dependent on:
∆k (10µm), ∆V (1mV), V (100mV), VT (100mV)
Lorentz signal dependent on mean BIP
(~ 0.25nT -> ~ 40nT; median ~6nT).
Even estimates @ 40nT < accn noise) (η = 0.01)
Exact spectral shape depends on discharging 
scheme & variability of e.g. mean charging 
rate (Shaul et al, CQG ’04)
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Stiffness: 

-4.93E-09-1.00E-08-5.27E-09-1.11E-08Stiffness, sQx (s-2)

LISA PF, 
solar 
max

LISA PF, 
solar 
min

LISA, 
solar 
max

LISA, 
solar 
min

Within
Limit?
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Terms that dominate are 
~ independent of ∆k

~V 
(100mV)

~VT
(100mV)

Independent 
of voltage

GRS Requirement: -2x10-8 -> 8x10-8 s-2



Coulomb Noise 

3.87E-165.98E-163.95E-166.22E-16Total noise (ms-2Hz-0.5)
5.95E-171.12E-166.32E-171.22E-16Lorentz noise (ms-2Hz-0.5)
2.25E-164.25E-162.39E-164.62E-16Voltage noise (ms-2Hz-0.5)
3.09E-164.04E-163.07E-163.97E-16Charge noise (ms-2Hz-0.5)
8.02E-181.55E-178.54E-181.70E-17Displacement noise (ms-2Hz-0.5)

LISA PF, 
solar 
max

LISA PF, 
solar 
min

LISA, 
solar 
max

LISA, 
solar 
min

For f ~ 10-4Hz
(Charge noise~1/f)
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Dominant term



Lorentz Noise

5.95E-171.12E-166.32E-171.22E-16Lorentz noise (ms-2Hz-0.5)

LISA PF, 
solar 
max

LISA PF, 
solar 
min

LISA, 
solar 
max

LISA, 
solar 
min

For f ~ 10-4Hz
(Lorentz noise~1/f1.6)

T108 7−×=SCB
5.07 THz101 −−×=SCBδT103 8−×=IPB

5.07 THz103 −−×=IPBδ

m

Lorentz accn:

Fluctuations
in BIP

Fluctuations in 
TM velocity

Charging 
“shot noise”

( ) mQtQtQtQtQ IPISCSCIPIIPIIPI BVBVBVBVBVa ××××× ηδδδηδηη ++++≈ &&&&
L

Accn Noise
Dominant term by > 3 orders of 

magnitude so ~ insensitive to 
range of BIP



Magnitude of Charging Disturbances 

3.87E-165.98E-163.95E-166.22E-16Total noise (ms-2Hz-0.5)
5.95E-171.12E-166.32E-171.22E-16Lorentz noise (ms-2Hz-0.5)
2.25E-164.25E-162.39E-164.62E-16Voltage noise (ms-2Hz-0.5)
3.09E-164.04E-163.07E-163.97E-16Charge noise (ms-2Hz-0.5)
8.02E-181.55E-178.54E-181.70E-17Displacement noise (ms-2Hz-0.5)

-4.93E-09-1.00E-08-5.27E-09-1.11E-08Stiffness, sQx (s-2)
0.280.530.300.57lx(t)  (S/N)

201.38720.38227.35850.87fx(t)  (S/N)
2,351.474,447.512,498.524,833.57ex(t) (S/N)

469746462708Effective charging rate (+e/s)
9317699191"Worst case" net charging rate assumed (+e/s)
438847100Net charging rate (GEANT GCR) (+e/s)

LISA PF, 
solar 
max

LISA PF, 
solar 
min

LISA, 
solar 
max

LISA, 
solar 
min

~

Within
Limit?

Noise Allocation =20% of LISA noise budget = ( )[ ] 5.02215 HzmsmHz3/1106.0 −−− +× f

• Reduce T by ~2 hrs => noise within spec
• If no contribution of secondaries -> net charging rate, total noise ~10-20%
• If V=1mV, the e(t) ~55% , stiffness ~90%, total noise ~20-30%



Comparison to //plate
• // plate approx overestimates

– Coulomb noise, stiffness, ex(t) by ~10%
– fx(t) by ~40%

• BUT LEVEL OF AGREEMENT IS DEPENDENT ON SENSOR GEOMETRY
• E.g. For similar “Trento torsion” sensor design, FE results  (validated in 

expt: Carbone et al 2003 Physical Review Letters 91 151101) & // 
plate approx give similar levels of agreement
– But if exclude guard rings for this design, agreement :

• CT(FE) = CT(//) x 1.56 (from 1.30)
• agreement of 2nd derivatives wrt x, y & z ~same (~20-30%)
• //plate approx overestimates:

– noise, stiffness, ex(t) by ~30-40%
– fx(t) by ~110%
– guard rings minimise fringing fields
– exact level of agreement between derived quantities also dependent 

on other parameters e.g. V
=> USE CAUTION WHEN EMPLOY // PLATE APPROX 



Management of disturbances

⇒Discharging rate = ~6 x Charging rate, to reach nominal noise budget

• UV light => discharge the TMs via pe effect.
• Nominally, T ~ 1 day => accn noise & stiffness within budget 
• But coherent charging signals above noise target
• To remove charging signals:

– spectral analysis?
– continuous discharging of the TMs at a rate exceeding the charging rate?

Disadvantage = increased noise 
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Variation of total 
noise for LISA solar 
min, with discharging 
rate, assuming Q=0

Thank-you

•Still need to quantify e.g. impact of restoration of equilibrium of charging 
and discharging currents following changes in the mean charging rate

⇒Variation in charging rate between solar min & max ~ 50% => plausible 
that discharging rate could be set high enough to cope with variations in 
the GCR flux, without exceeding budgets


