Electronic Phase Delays

- A First Step Towards A Bench-Top Model of LISA -

James Ira Thorpe

Rachel Parks, Shannon Sankar, Rodrigo Delgadillo, Derek Mulder, Guido Mueller

University of Florida

5th International LISA Symposium – ESA ESTEC

Noordwijk, Netherlands

July 13th, 2004

Current Work

- What is Electronic Phase Delay (EPD)?
- Using EPD to make a "Synthetic Interferometer"

Future Work

- Upcoming experiments
- The bench-top LISA model

Introduction I -A Simple Model of A Single LISA Arm

- Laser field
 - $E(t) = E_0 \exp\{i[\omega t + \phi(t)]\}$
- Phase Meter (PM) Signal $S(t) \propto \phi(t) - \phi(t - \tau_{RT})$ τ_{RT} **5** round-trip light travel time
- Simplifying Assumptions
 - far S/C acts as perfect optical transponder (mirror)
 - stationary S/C (no Doppler shifts)

2004 LISA Symposium

The large Optical Path Lengths (OPLs) in LISA correspond to $\tau_{RT} \sim 33s$. It is virtually impossible to create physical OPLs of this size in the laboratory.

Solution: We only need to delay the *phase* of the laser.

- demodulate it with a stable oscillator (another laser)
- digitize the difference phase
- store it in a buffer
- regenerate the signal

Electronic Phase Delay (EPD)

Implementation of Electronic Phase Delay (EPD)

- Three Steps
- Digitize input signal
- Store in a FIFO memory buffer for the desired time.
- Regenerate analog signal

Limitations

- Digitization Rate (limits bandwidth)
- Digitization Precision (noise)

Current Iteration

- MicroStar DAP5216a Data Processing Card
- 200kS/s
- 16-bit
- signals ***** 30kHz are reproduced well

Future Technologies

- Increase digitization rate so that signals up to 20MHz can be delayed.

Mixer Output, $S \propto \phi(t) - \phi(t - \tau)$

Equivalent to an interferometer with one long arm having a delay of τ

Demonstration of a Synthetic Interferometer

2004 LISA Symposium

time (s)

- Mixer Output
 - $S(t) \propto \phi_{12}(t) \phi_{12}(t-\tau)$
- Fourier Transform

$$\widetilde{S}(2\pi f) \propto \widetilde{\phi}_{12}(2\pi f) (1-e^{-i2\pi f\tau})$$

• Transfer Function

$$T_{PM}\left(2\pi f\right) \equiv \frac{\widetilde{S}\left(2\pi f\right)}{\widetilde{\phi}\left(2\pi f\right)} \propto \left(1 - e^{-i2\pi f\tau}\right)$$

$$|T_{PM}(2\pi f)| \propto |\sin(\pi f\tau)|$$
$$\angle T_{PM}(2\pi f) = \tan^{-1}[\cot(\pi f\tau)]$$

Zeros at f_0 **6** n / τ Phase Discontinuity from -90° to +90° at f_0

Interferometer Signal $M(t) \propto \phi_{10}(t) - \phi_{10}(t - \tau)$ Lock laser phase difference to interferometer zero $\phi_{10}(t) = \phi_{10}(t - \tau)$

The Next Step II – "TDI" With a Single LISA Arm

Phase Lock
$$M(t) = 0 \Rightarrow \phi_{20}(t) = \phi_{10}(t - \tau)$$

Experimental Test $\angle S_2(t) = \phi_{20}(t) \stackrel{?}{=} \angle S_1(t - \tau) = \phi_{10}(t - \tau)$

Interferometry Signals on S/C 1

$$S_{21}(t) \& S_{31}(t)$$

Experimental Test of TDI

$$S_{21}(t) - S_{21}(t - \tau_{13} - \tau_{31}) - S_{31}(t) + S_{31}(t - \tau_{12} - \tau_{21}) = 0?$$

- Incorporate additional features
- clock noise
- Doppler shifts
- bench motion

- Add 3rd arm
- •Add GW signals
- Incorporate data reduction algorithms

• ...?

Take it for a test drive!

Host a "Mock Data Challenge" in which we inject a GW signal and then attempt to extract it.

The LISA crew at UFL

(front row, left to right) Ira Thorpe, Shannon Sankar, Rodrigo Delgadillo, Derek Mulder (standing) Rachel Parks, Guido Mueller

2004 LISA Symposium

