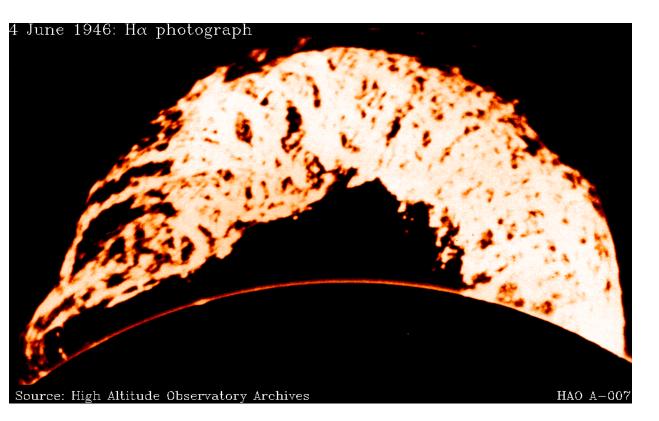
Simulation of the charging process of the LISA test masses due to solar particles.

5th International Lisa Symposium 14 July 2004

Helios Vocca

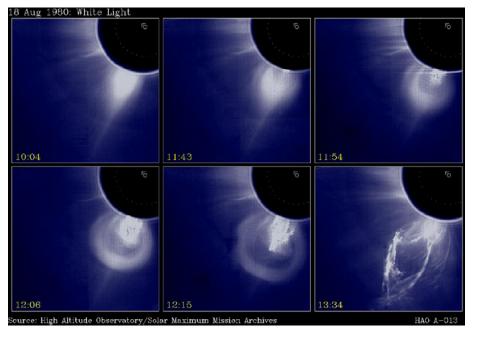
INFN Pg

Solar Energetic Particles (SEPs)


SEPs are particles above 1 MeV emitted by the Sun. They are mainly divided in two types of events: **Impulsive** and **Gradual**

	Impulsive	Gradual
Particles	Electron-rich	Proton-rich
3He/4He	~1	~0.0005
Fe/O	~1	~0.1
H/He	~10	~100
QFe	~20	~14
Duration	Hours	Days
Longitude Cone	<30 deg	~180 deg
Radio Type	III, V (II)	II, IV
X-rays	Impulsive	Gradual
Coronagraph	-	CME (96%)
Solar Wind	-	IP Shock
Events/year	~1000	~10

Reames, D V 1996, Energetic Particles from Solar Flares and Coronal Mass Ejections, in High Energy Solar Physics, Eds. R Ramaty, N Mandzhavidze, X-M Hua, *AIP Conf. Proc.* 374, p35. Helios Vocca - Lisa Symposium - 14 July 2004

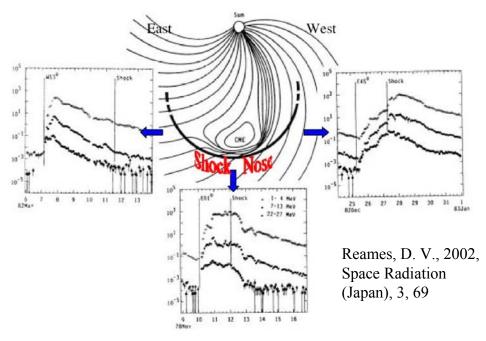

Gradual Events

Solar energetic particles (SEPs) in gradual events are accelerated at a shock driven by a coronal mass ejection (CME) moving through the corona into the interplanetary medium.

CME-driven shocks produce most of the large particle events at 1 AU and can accelerate protons up to 20 GeV.

In large events the shock has been directly observed by spacecraft near 1 AU that are separated in longitude by 160°.

The spiral interplanetary magnetic field generates an asymmetry in the intensity-time profiles of SEP. In particular, events originating in the western hemisphere of the Sun are more likely to produce SEPs able to reach the Earth with respect to those in the eastern hemisphere.


Protons can arrive from magnetically wellconnected sites in tens of minutes.

For particles in the GeV range, the most effective longitude is close to 60°W.

CME propagation

The high fluence active sun period is of 7 years, from 2 years before the solar maximum year to 4 years after. The propagation time (between event and appearance of protons at the spacecraft) is a strong function of the longitude of the solar event.

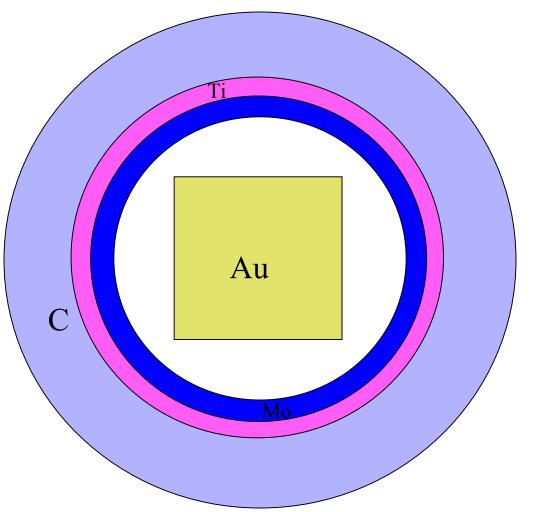
The time of the onset corresponds to the time at which the shock intercepts the magnetic field lines to the spacecraft

LISA spacecraft characteristics

- Distance from the Sun
 0.9933 ÷ 1.0133 AU
- Latitude off the ecliptic

 $0.7^{\circ} \div 1.0^{\circ}$

• Longitude difference with respect to Earth $19^{\circ} \div 21^{\circ}$

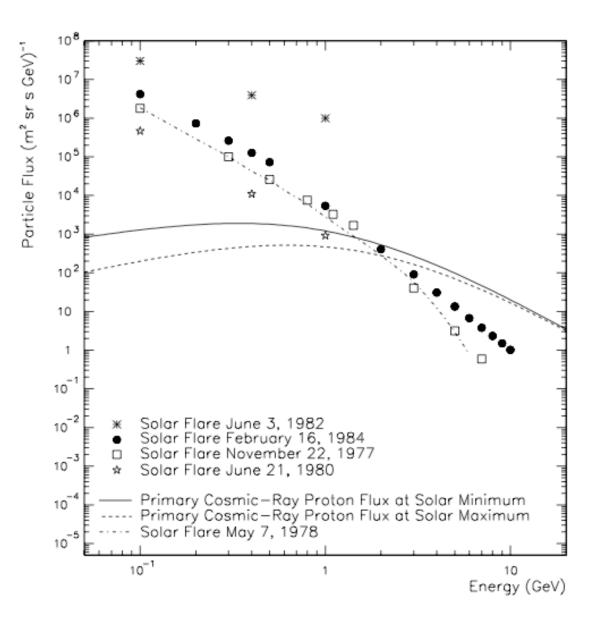

SEPs on LISA

- The *shock nose* of a typical gradual event takes about two days to reach Earth or LISA, half a day to cover the distance Earth-Lisa and about one hour to go through the three LISA detectors
- Gradual event can cause a series of signals of frequency below a few units 10⁻⁴ Hz

Fluka particle transport

	Secondary particles	Primary particles
Charged hadrons	1 keV ÷ 20 TeV	100 keV ÷ 20 TeV
Neutrons	Thermal ÷ 20 TeV	Thermal ÷ 20 TeV
Muons	1 keV ÷ 1 PeV	100 keV ÷ 1 PeV
Electrons (low-Z)	1 keV ÷ 1 PeV	70 keV ÷ 1 PeV
(high-Z)	1 keV ÷ 1 PeV	150 keV ÷ 100 TeV
Photons	1 keV ÷ 1 PeV	7 keV ÷ 1 PeV

Simulation scheme



- Shape: cube
- Side: 4.6 cm
- Material: gold
- Thickness : 88.9 g/cm^2

Simulation materials

	Density <i>(g/cm³)</i>	Thickness <i>(cm)</i>	Grammage <i>(g/cm²)</i>
Carbon	2.1	2.0	4.2
Titanium	4.54	0.5	2.3
Molybdenum	10.28	0.6	6.2
Gold	19.32	4.6	88.9

Proton fluxes

Helios Vocca - Lisa Symposium - 14 July 2004

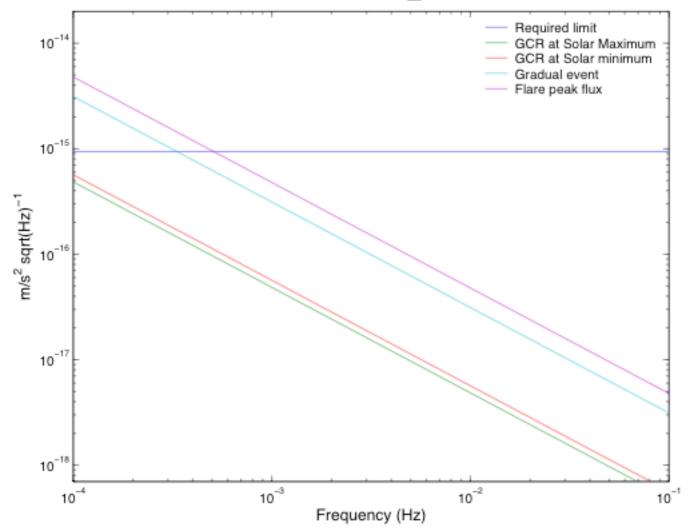
Proton results:

Source	Charge rate (e ⁺ /s)	Effective charge rate (e/s)
GCR at solar maximum	15	110
GCR at solar minimum	42	150
Gradual Event 1	173	206
Gradual Event 2	2090	2120
Gradual Event 3	3460	3480
Gradual Event 4	4385	4395
Gradual Event 5	4570	4575
Solar Flare peak flux	10700	10720

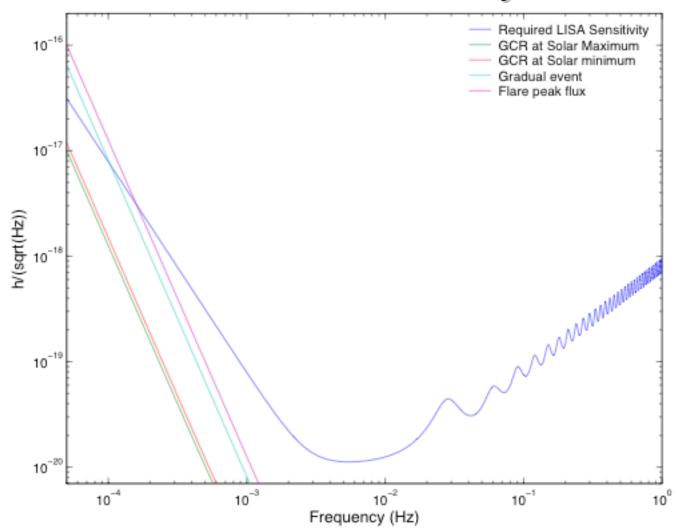
LISA acceleration noise spectral density

$$S^{1/2}(\omega) = 0.8 \times 10^{-15} \frac{m}{s^2 \sqrt{Hz}} \left(\frac{4mm}{gap}\right) \left(\frac{V_{dc}}{10mV}\right) \left(\frac{\lambda_{eff}}{300s^{-1}}\right)^{1/2} \left(\frac{0.1mHz}{f}\right)^*$$

Required acceleration noise limit for random charge:

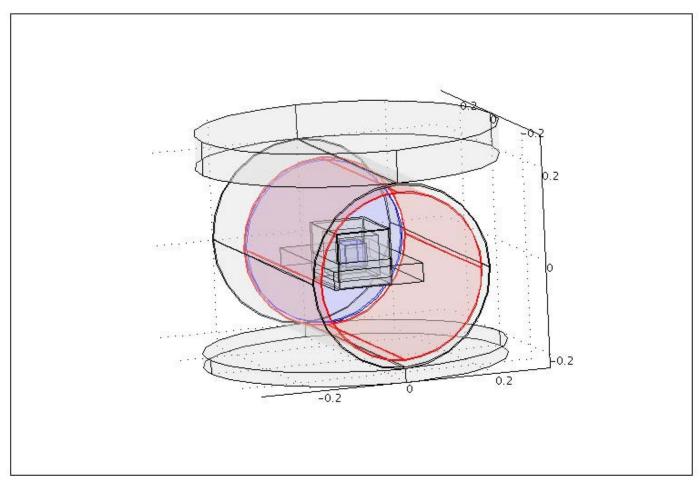

9.4·10⁻¹⁶ (m s⁻² Hz^{-1/2}) [total: 3·10⁻¹⁵] $(10^{-4} \div 10^{-1} Hz)$

* See Rita Dolesi's talk


LISA acceleration noise spectral density

Effective charge rate (e/s)	Acceleration noise spectral density @ 0.1mHz (<i>m</i> s ⁻² Hz ^{-1/2})
110	0.48 ·10 ⁻¹⁵
150	0.57 ·10 ⁻¹⁵
206	0.66 · 10-15
2120	2.1 · 10 ⁻¹⁵
3480	2.7 . 10-15
4395	3.1.10-15
4575	3.1 .10-15
10720	4.8 · 10 ⁻¹⁵
	(e/s) 110 150 206 2120 3480 4395 4575

Acceleration noise spectral density



LISA sensitivity

Next step

- The new geometry has been inserted
- No data available until now

Conclusions

- The LISA test mass charging process is studied with the Fluka Monte Carlo program;
- Preliminary geometry results are available at the present moment for protons and solar flares;
- The charge rate due to GCR and solar protons have been determined;
- Simulations of a much complex geometry are in progress.