

LISA 5th Conference Noordwijk 12-16 July 2004

+ 2 posters

Alessandro D.A.M. Spallicci Sofiane Aoudia

UMR 6162, Département ARTEMIS d'Astrophysique Relativiste

Observatoire de la Côte d'Azur (OCA) Nice France http://www.obs-nice.fr/artemis

RR Plunging phase and radial fall? *Fundamental physics*

- II. Classical problem of gravitation! (apple falling)
- III. Radiation reaction not adiabatic!
- IV. Most rr (in radial fall) between 4M 2M
- V. pN N/A (convergence, v/c)

$$\frac{dE}{dt} \propto \ddot{Q}^2 \quad \text{At 10 M} \quad \text{pN} = \text{quadrupole}$$

- I. Entry problem, before tackling close and scattered orbits
- II. Plunging and signal discrimination (known waveform)
 - No 17 parameters + etc. problem
- IV. Plunging only visible (??) part of capture for low-end LISA frequency spectrum $(10^{6-7} M_{\ddot{Y}})$
- V. All captures finish in a plunge
- VI. Applicable to Last Phase in Coalescence (close limit) VII.It's all quasinormal.

Review of what do we know and what are we doing in Nice

Self force Some spacetimes determine tail effects when crossed by perturbations x_0 $x_$

$$F_{self}^{\mu} = \lim_{x \to x_0} \sum_{l=0}^{\infty} F_{tail}^{\mu l}(x) = \lim_{x \to x_0} \sum_{l=0}^{\infty} \left(F_{full}^{\mu l}(x) - F_{inst}^{\mu l}(x) \right)$$
$$\lim_{x \to 0} \sum_{l=0}^{\infty} \left(F_{full\pm}^{\mu l} - A_{\pm}^{\mu} L - B^{\mu} - C^{\mu} / L \right) - D^{\mu}$$

PM sign indicates derivative forward or backward r_p

L = 1 + 1/2

Checked OK

 F_{full} = waited waveform numerical simulation $\overline{A}_{inst} = 0, B_{inst}, C_{inst} = 0$ checked OK $D_{inst} = 0$ on - going

Work J.-Y. Vinet for determination ongoing → Poster

Perturbations

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

Linearisation allows splitting of orders 0 and 1

Geometry = Matter _____ Perturbed Geometry = Perturbing Matter

Spherical symmetry \rightarrow Rotationally invariant operator on h , equal to the variation of the energy momentum tensor, both expressed in spherical harmonics:

$$\begin{split} R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = T_{\mu\nu} \implies Q[h_{\mu\nu}] \propto \Delta T_{\mu\nu} \\ \approx e^{r} + 2M \ln\left(\frac{r}{2M} - 1\right) & \lambda = \frac{(l+2)(l-1)}{2} & \frac{\partial^{2} \Psi_{l}}{\partial r^{*2}} - \frac{\partial^{2} \Psi_{l}}{\partial t^{2}} - V_{l}(r) = S_{l}(r,t) \\ \approx e^{r} + \frac{4\sqrt{\pi} (9 + 8\lambda)^{l/4} m}{\lambda + 1 E} & \lambda = \frac{(l+2)(l-1)}{2} & V_{l}(r) = \left(1 - \frac{2M}{r}\right) \frac{2\lambda^{2}(\lambda + 1)r^{3} + 6\lambda^{2}Mr^{2} + 18\lambda M^{2}r + 18M^{3}}{r^{3}(\lambda r + 3M)^{2}} \\ = \frac{4\sqrt{\pi} (9 + 8\lambda)^{l/4} m}{\lambda + 1 E} & S_{l}(r,t) = \kappa \frac{r\left(1 - \frac{2M}{r}\right)^{3}}{\lambda r + 3M} \left\{\delta^{r}[r - r_{p}(t)] - \frac{1}{r^{2}\left(1 - \frac{2M}{r}\right)^{2}} \left[(\lambda + 1)r - \beta M - \frac{6Mr\tilde{E}^{2}}{\lambda r + 3M}\right]\delta[r - r_{p}(t)] \right\} \\ = f(LP)3(MP) \\ = f(r_{p}) = 4M\tilde{E} \left[\frac{r_{o}}{4M}\sqrt{\frac{r_{p}}{2M}}\sqrt{1 - \frac{r_{p}}{r_{o}}} - \sqrt{\frac{r_{o}}{M}}\left(1 + \frac{r_{o}}{4M}\right) \arcsin\sqrt{\frac{r_{p}}{r_{o}}} - \frac{1}{4E^{2}} \ln \left[\frac{1 + \frac{r_{o}}{2M} - \frac{r_{o}}{r_{o}} - 2E\sqrt{\frac{r_{o}}{M}}\sqrt{\frac{r_{o}}{r_{o}}}}{1 + \frac{r_{o}}{r_{o}} - 2E\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{2M}}\sqrt{\frac{r_{o}}{r_{o}}}} + \frac{\pi}{2\sqrt{2M}}\left(1 + \frac{r_{o}}{4M}\right)}\right] \\ = 4M\tilde{E} \left[\frac{r_{o}}{4M}\sqrt{\frac{r_{p}}{2M}}\sqrt{1 - \frac{r_{p}}{r_{o}}} - \sqrt{\frac{r_{o}}{M}}\left(1 + \frac{r_{o}}{4M}\right) \arcsin\sqrt{\frac{r_{p}}{r_{o}}} - \frac{1}{4E^{2}} \ln \left[\frac{1 + \frac{r_{o}}{r_{o}} - 2E\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{2M}}\sqrt{\frac{r_{o}}{r_{o}}}}\right] + \frac{\pi}{2\sqrt{2M}}\left(1 + \frac{r_{o}}{4M}\right)}\right] \\ = \frac{1}{2M} \left[\frac{r_{o}}{2M}\sqrt{\frac{r_{o}}{2M}}\sqrt{\frac{r_{o}}{r_{o}}}\sqrt{\frac{r_{o}}{M}}\sqrt{\frac{r_{o}}{r_{o}}}}\right] + \frac{1}{2M} \left[\frac{r_{o}}{2}\sqrt{\frac{r_{o}}{2}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{2}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}}\right] + \frac{r_{o}}{2}\sqrt{\frac{r_{o}}{2}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}}\right] + \frac{r_{o}}}{2}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}\sqrt{\frac{r_{o}}{R}}}$$

The pragmatic approach (geodesic or minimal action)

$$\frac{d^{2}x^{\mu}}{ds^{2}} = -\Gamma_{\sigma\nu}^{\mu} \frac{dx^{\sigma}}{ds} \frac{dx^{\nu}}{ds} \left[\frac{d^{2}r_{e}}{dt^{2}} = \Gamma_{rr}^{t} \left(\frac{dr_{e}}{dt} \right)^{3} + (2\Gamma_{tr}^{t} - \Gamma_{rr}^{r}) \left(\frac{dr_{e}}{dt} \right)^{2} + (\Gamma_{tt}^{t} - 2\Gamma_{tr}^{r}) \left(\frac{dr_{e}}{dt} \right) - \Gamma_{tt}^{r}$$

$$\Gamma_{\sigma\nu}^{\mu} = \frac{1}{2} g^{\mu\rho} (g_{\rho\sigma,\nu} + g_{\rho\nu,\sigma} - g_{\sigma\nu,\rho}) \left[1 \qquad r_{e} = r_{p} + \Delta r_{p} \right]$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h^{(1)}_{\mu\nu} \qquad \eta_{\mu\nu} = \text{Schwarzschild}$$

$$\underset{\text{Extension to 6 new terms}}{3} \left[g_{\mu\nu}(r_{e}) = g_{\mu\nu}(r_{p}) + \Delta r_{p} \frac{\partial g_{\mu\nu}}{\partial r} \right]_{r_{p}}$$

$$\Delta \ddot{r}_{p} = \alpha_{1} \Delta r_{p} + \alpha_{2} \Delta \dot{r}_{p} + \alpha_{3} \Delta r_{p}^{2} + \alpha_{4} \Delta \dot{r}_{p}^{2} + \alpha_{5} \Delta r_{p} \Delta \dot{r}_{p} + \alpha_{6} + \alpha_{7} \Delta r_{p} + \alpha_{8} \Delta \dot{r}_{p} + \alpha_{6} \right]$$

%1-5 represent the unperturbed field at the perturbed trajectory **%**6 represent the perturbed field at the unperturbed trajectory **%**7-8 represent the perturbed field at the perturbed trajectory **%**9 represent quadratic first order perturbations - optional -)
Numerical simulation → + derivatives → H₀ H₁ → a terms → r_p radiation reaction
5
Work J.-Y. Vinet for determination ongoing → Poster

 $\Delta \ddot{r}_{p} = \Delta \ddot{r}_{p} (\eta)_{\alpha_{1-5}} + \Delta \ddot{r}_{p} (h)_{\alpha_{6-9}}$

$$\alpha_{0} = -\frac{M}{r} \left(\frac{r-2M}{r^{2}} - \frac{3M}{r-2M} \dot{r}_{p}^{2} \right)$$

$$\alpha_{1} = -\frac{2M}{r^{2}} \left(\frac{3M}{r^{2}} - \frac{1}{r} + \frac{3(r-M)}{(r-2M)^{2}} \dot{r}_{p}^{2} \right)$$

$$\alpha_{2} = \frac{6M}{r(r-2M)} \dot{r}_{p}^{2}$$

$$\alpha_{3} = \frac{4M^{2}}{r^{3}} \left(\frac{1}{r} + \frac{r-4M}{(r-2M)^{3}} \dot{r}_{p}^{2} \right)$$

$$\alpha_{4} = \frac{3M}{r(r-2M)}$$

$$\alpha_{5} = -\frac{4M}{r(r-2M)} \left(\frac{M}{r(r-2M)} + \frac{2}{r} + \frac{1}{r-2M} \right) \dot{r}_{p}$$

$$\alpha_{6} = \frac{1}{r - 2M} \left[\frac{r^{2}}{2(r - 2M)} \dot{H}_{0} - \frac{M}{r - 2M} H_{1} - rH_{1}' \right] \dot{r}_{p}^{3} - \frac{3}{2} H_{0}' \dot{r}_{p}^{2} - 3 \left(\frac{1}{2} \dot{H}_{0} - \frac{M}{r^{2}} H_{1} \right) \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r^{2}} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r^{2}} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r^{2}} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r^{2}} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r^{2}} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} H_{0}' - \dot{H}_{1} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{1}{2} \frac{r - 2M}{r} \right] \dot{r}_{p} + \frac{r - 2M}{r} \left[\frac{2M}{r} H_{0} - \frac{2M}{r} \right] \dot{r}_{p$$

$$\alpha_{7} = -\frac{1}{r-2M} \left[\frac{2Mr}{(r-2M)^{2}} \dot{H}_{0} - \frac{1}{2} \frac{r^{2}}{r-2M} \dot{H}_{0}' - \frac{2M}{(r-2M)^{2}} H_{1} - \frac{M}{r-2M} H_{1}' + rH_{1}'' \right] \dot{r}_{p}^{3} - \frac{3}{2} H_{0}'' \dot{r}_{p}^{2} - \frac{3}{2} \left(\dot{H}_{0}' + \frac{4M}{r^{3}} H_{1} - \frac{2M}{r^{2}} H_{1}' \right) \dot{r}_{p}^{3} + \frac{3}{2} H_{0}'' \dot{r}_{p}^{3} - \frac{3}{2} H_{0}'' \dot{r}_{p}^{2} - \frac{3}{2} \left(\dot{H}_{0}' + \frac{4M}{r^{3}} H_{1} - \frac{2M}{r^{2}} H_{1}' \right) \dot{r}_{p}^{3} + \frac{3}{2} H_{0}'' \dot{r}_{p}^{3} - \frac{3}{2} H_{0}'' \dot{r}_{p}^{2} - \frac{3}{2} \left(\dot{H}_{0}' + \frac{4M}{r^{3}} H_{1} - \frac{2M}{r^{2}} H_{1}' \right) \dot{r}_{p}^{3} + \frac{3}{2} H_{0}'' \dot{r}_{p}^{3} - \frac{3}{2} H_{0}'' \dot{r}_{p}^{3} + \frac{3}{2} H_{0}'' \dot{r}_{p}^$$

$$-\frac{1}{r}\left[\frac{4M(r-3M)}{r^{3}}H_{0}-\frac{4M(r-2M)}{r^{2}}H_{0}'-\frac{1}{2}\frac{(r-2M)^{2}}{r}H_{0}''+\frac{2M}{r}\dot{H}_{1}+(r-2M)\dot{H}_{1}'\right]$$

2004.Class. Quantum. Grav., 21, S563.

Renormalisation

2004.Class. Quantum. Grav., 21, S563.

$$\begin{split} \overline{\Psi} &\simeq L^{-2.5} \\ \overline{\Psi}_{,r} &\simeq L^{-2.5} \\ \overline{\Psi}_{,rr} &\simeq L^{-0.5} \\ \overline{\Psi}_{,rrr} &\simeq L^{-0.5} \\ \overline{\Psi}_{,rr} &\simeq L^{-0.5} \\ \overline{L} &= l + \frac{1}{2} \\ \lambda &= \frac{1}{2}L^2 - \frac{9}{8} \\ \overline{\zeta} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^{\infty} (l+a)^{-s} \quad a = 0.5 \\ \overline{\xi} (s, a) &= \sum_{l=0}^$$

Brans-Dicke theory and capture (Poster B. Chauvineau, AS, J.-D. Fournier)

$$R_{\alpha\beta} = \frac{1}{\Phi} \nabla_{\alpha} \partial_{\beta} \Phi + \frac{\omega}{\Phi^2} \partial_{\alpha} \Phi \partial_{\beta} \Phi \qquad \text{Box } \Phi = 0 \qquad \partial \Phi = 0 \Rightarrow \text{GR}$$

BD non equal GR when regime is out of stationarity

Unconsidered effect so far (apart from monopole, dipole, less than c speed features)

$$g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta} \qquad \Phi = 1 + \phi \qquad \partial_{\alpha} \left(\sqrt{-\eta \eta^{\alpha\beta}} \partial_{\beta} \phi \right) = 0 \qquad \downarrow$$

$$[A \text{ term}] = \left[\frac{\partial \phi}{r_{bh}} \right] \qquad [B \text{ term}] = \left[\omega \partial \phi^2 \right] \qquad R_{\alpha\beta} (h_{\alpha\beta}) = \begin{pmatrix} B \\ A(+B) \\ A \end{pmatrix} \downarrow t \qquad Schwarzschild$$

$$\partial \phi > \frac{1}{\omega r_{bh}} \implies B \text{ term (optional)}$$

$$\partial \phi < \frac{1}{\omega r_{bh}} \implies A \text{ term}$$

$$\int_{\alpha\beta} \infty e^{-\lambda t} R(r) Y(\theta, \varphi) \qquad R \propto e^{-\lambda t} R(r) + c_2 \left(\frac{r}{r_g} - 1 \right)^{-\lambda r_g} \qquad R \propto \frac{e^{-\lambda r}}{r} \qquad r \to \infty$$

$$T_{\alpha\beta} \propto e^{-2\lambda t} \quad \text{or} \qquad e^{-\lambda t} \qquad \text{Slope change}$$

$$= (M)$$

Conclusions / Status

Two methods for radiation reaction: Self-force: Partial confirmation of mode-sum renormalisation results of other groups (A,B,C instantaneous values)

Pragmatic: richer geodesic (addition of 6 terms) Riemann-Hurwitz renormalisation extended (3 terms)

Connection self-force / pragmatic under investigation

Non radiative modes (L=0,1) analysis under going

Capture is a rich field for research (Fundamental physics, Relativistic Astrophysics, Data Analysis)

9

SPALLICCI A. Aoudia S., 2004. *Perturbation method in the assessment of radiation reaction in the capture of stars by black holes*, Class. Quantum. Grav., 21, S563. gr-qc/0309039

SPALLICCI A. 1999. *Radiation reaction in free fall from perturbative geodesic equations in spherical coordinates*, 8th Marcel Grossmann Meeting, 22-28 June 1997, Jerusalem, T. Piran, R. Ruffini Eds., World Scientific, 1107.

SPALLICCI A., 1999. On the perturbed Schwarzschild geometry for determination of particle motion, 2nd Amaldi Conf. on Gravitational Waves, 1-4 July 1997, Cern Geneve, E. Coccia, G. Veneziano, G. Pizzella Eds., World Scientific, 303.

SPALLICCI A., 2000. *Analytic solution of Regge-Wheeler differential equation for black hole perturbations in radial coordinate and time domains*, Recent Developments in General Relativity, 13th Italian Conf. on General Rel. and Grav. Physics, 21-25 September 1998 Monopoli (Bari), B. Casciaro, D. Fortunato, M. Francaviglia, A. Masiello, Eds., Springer, 371.