Brown Dwạrf Formation from Early Ejection: Resultes from Recent SPH Simulations

Matthew Bate
University of Exeter

Stellar Properties

- Distribution of stellar masses
- Observed to be relatively invariant, at least in our Galaxy (Kroupa 200I; Chabrier 2003)
- Star formation rate and efficiency
- Observed to be 3-6\% of gas mass per free-fall time (Evans et al. 2009)
- Fraction of binary and multiple stars
- Observed to be an increasing function of primary mass

- Separations, mass ratios, eccentricities
- High order systems (triples, quadruples)
- Protoplanetary discs
- Masses, sizes, density distributions

Bate 2009a: 500 Mo cloud with decaying turbulence, 35 million SPH particles Follows binaries to I AU, discs to ~10 AU
Forms I254 stars and brown dwarfs - best statistics to date from a single calculation

Radial Distributions of Properties

- The calculation produces a very dense cluster
- Half-mass radius is just I0,000 AU (0.05 pc)
- No significant mass segregation in the cluster or halo
- Contrary to the usual picture of competitive accretion, perhaps due to the recent mergers of sub-clusters
- Binary fractions decrease \& velocity dispersion increases
- But only outside 3 half-mass radii
- Kohler et al. 2006 investigated ONC binaries at I-2 half-mass radii

Quantity / Distance range	$<1000 \mathrm{AU}$	$1000-3000 \mathrm{AU}$	$3000-10^{4} \mathrm{AU}$	$1-3 \times 10^{4} \mathrm{AU}$	$3-10 \times 10^{4} \mathrm{AU}$	$>1 \times 10^{5} \mathrm{AU}$
Median mass $\left[\mathrm{M}_{\odot}\right]$	0.18	0.024	0.035	0.056	0.054	0.045
Upper quartile mass $\left[\mathrm{M}_{\odot}\right]$	0.30	0.091	0.098	0.15	0.18	0.095
Maximum mass $\left[\mathrm{M}_{\odot}\right]$	5.3	2.9	3.7	2.5	2.1	2.0
Velocity dispersion $[\mathrm{km} / \mathrm{s}]$	6.1	4.0	4.2	4.3	8.2	13.8
Number objects	8	56	569	408	172	41
Number binaries	2	8	68	55	13	0
Binary fraction	0.33	0.167	0.136	0.156	0.082	0.0

Velocity Dispersion

- No strong dependence of stellar velocities on stellar mass
- VLM objects have a smaller velocity dispersion than stars (80\%) (c.f. Joergens)
- Binaries have $\sim 60 \%$ of the velocity dispersion of single stars

Stellar Mass Distribution

- Competitive accretion/ejection gives
- Salpeter-type slope at high-mass end
- Low-mass turn over
- ~ 4 times as many brown dwarfs as a typical star-forming region
- Not due to sink particle approximation - results almost identical for different sink parameters

IMF: Competitive Accretion and Ejection

- Stars and brown dwarfs
- Form with opacity limited masses, accrete to larger masses
- Final masses depend on how long they accrete
- Accretion typically terminated by ejection

Multiplicity as a Function of Primary Mas ${ }^{7^{2}}$

- Multiplicity fraction $=(\mathrm{B}+\mathrm{T}+\mathrm{Q}) /(\mathrm{S}+\mathrm{B}+\mathrm{T}+\mathrm{Q})$
- Observations: Close et al. 2003; Basri \& Reiners 2006; Fisher \& Marcy 1992; Duquennoy \& Mayor I991; Preibisch et al. I999; Mason et al. 1998

Dependence of Multiplicity on Sink Particle Radius

- Decreasing the sink particle accretion radius slightly increases the VLM binary frequency

Accretion radius: 5 AU
Accretion Radius: 0.5 AU

Star/VLM Object Separation Distributions

Stars: binary, triple, quad separations
Median separation: 26 AU

VLM objects: binaries, triples, quads
Median separation: IO AU

Solid line: Duquennoy \& Mayor I99|

Star/VLM Object Separation Distributions

- Distributions depend on sink particle size
- Reducing sink particle size from 5 to 0.5 AU
- Produces log-normal stellar separation distribution
- Increases binary fraction for VLM objects
- Also separations ofVLM objects decrease with time

Star/VLM Object Binary Mass Ratio Distributions

Stars: M>0.5 M๑
59% have $\mathrm{q}>0.6$

Stars: $0.1<\mathrm{M}<0.5 \mathrm{M}_{\odot}$
51% have $q>0.6$

VLM objects: $\mathrm{M}<0.1$ M○

71\% have $q>0.6$

VLM Binary Eccentricity Distribution

- Trent Dupuy: presented first eccentricity distribution for VLM binaries
- Tend to have low eccentricities

Observations
Calculation (accretion radii 0.5 AU)

VLM Companions to Stars

- Frequency of $\sim 10 \%$
- Independent of primary mass (from 0.I Mo up to solar masses)
- BUT, typical separation increases with primary mass
- 0.I-0.2 Mo: $3 / 14$ systems have separations $<30 \mathrm{AU}$
- 0.2-0.5 Mo: 3 at < $10 \mathrm{AU}, \quad \mathrm{I}$ at $50 \mathrm{AU}, 3$ at $>1000 \mathrm{AU}$
- 0.5-0.8 M○: 3 with separations 27-65 AU
- Solar type primaries: 2 cases, both with separations >1000 AU
- Impossible to examine increased frequency of binary VLM companions to stars with current statistics
- Stamatellos \& Whitworth 2009 type simulations

Discs: Closest Encounter Distance

- Dense star cluster produces many close encounters, truncating discs
- All stars > \| Mo have had encounters closer than 2 AU
- Doesn't mean don't have discs - if not ejected, discs often re-form through accretion
- Brown dwarfs: encounter distances from < I AU to > 100 AU
- Those without close encounters may have large discs

Hydrodynamical Star Formation

- Can now perform simulations that form large numbers of objects
- Statistical uncertainties are the same as from observations
- Comparison with observations shows what we get right and wrong
- Many properties and trends are in good agreement with observations
- General form of the IMF
- Multiplicity with primary mass
- Trends for separation and mass ratio distributions
- Orbital planes of triple systems
- Two glaring inconsistencies:
- Too many brown dwarfs
- To few wide, unequal mass solar-type binaries
- Need to move on with additional physics

Star Cluster Formation with Radiative Feedbaclere

- Repeat Bate, Bonnell \& Bromm 2003, Bate \& Bonnell 2005
- 50 Mo molecular clouds, Decaying `turbulence' $\mathrm{P}(\mathrm{k}) \propto \mathrm{k}^{-4}$
- Diameters 0.4 pc and 0.2 pc , Mean thermal Jeans masses I Mo and I/3 M๑
- 3,500,000 SPH particles
- Sink particles
- Radiative transfer calculations: Sink Radii 0.5 AU, no gravitational softening
- Radiative transfer
- Implicit, grey flux-limited diffusion
- Separate radiation and matter temperatures, but assumes gas = dust temperature
- See poster by Andrea Urban (S266)
- No feedback from protostars
- Intrinsic protostellar luminosity unimportant
- Accretion luminosity underestimated (energy liberated from 0.5 AU to stellar surface)
- Gives a lower limit on the effects of radiative feedback

BBB2003:Typical cloud: Jeans mass I Mo, P(k) $\propto \mathrm{k}^{-4}$
 with Radiative Transfer

Impact of Radiative Feedback

- Bate, Bonnell \& Bromm (2003)
- "Typical" density 50 Mo molecular cloud ($\sim 10^{4} \mathrm{~cm}^{-3}$)

	Stars	Brown Dwarfs	Total
Barotropic Equation of State	23	27	$50 \quad\left(1.40 \mathrm{t}_{\mathrm{f}}\right)$
Radiative Transfer	11	2	13
$\left.1.40 \mathrm{t}_{\mathrm{f}}\right)$			

- Bate \& Bonnell (2005)
- Denser 50 Mo cloud ($\sim 10^{5} \mathrm{~cm}^{-3}$)

	Stars	Brown Dwarfs	Total
Barotropic Equation of State	19	60	$79 \quad(1.40 \mathrm{tfif})$
Radiative Transfer	14	3	$17 \quad\left(1.40 \mathrm{tff}_{\mathrm{f}}\right)$

Radiative Feedback and the IMF

- Radiative feedback brings the star to brown dwarf ratio in line with observations
- Observations suggest a ratio of 5 ± 2
- Chabrier 2003; Greissl et al. 2007; Luhman 2007;Andersen et al. 2008
- Simulations: 25:5 ~ 5
- Bate 2009b
- Furthermore, dependence of the IMF cloud density is removed
- K-S test on the two IMFs with radiative shows them to be indistinguishable

Large-scale Simulations with Radiative Feedbaclere

- Currently re-running Bate (2009a) with radiative feedback
- 500 Mo cloud, using $35,000,000$ SPH particles
- Resolves opacity limit for fragmentation
- Follows:
- All binaries $(0.02 \mathrm{AU})$ and discs to $\sim \mathrm{I}$ AU radius
- Results so far
- Just reached I. 06 initial cloud free-fall times
- Formed 89 stars and brown dwarfs
- Including I binary brown dwarf system: I5 AU separation, 0.04 eccentricity
- Original calculation at the same time: ~ 300 stars and brown dwarfs

Large-scale Simulations with Radiative Feedbaclere

- Comparison of the IMFs obtained without and with radiative feedback
- As expected, many fewer brown dwarfs
- Stars to brown dwarfs without radiative feedback: 74:154~I/2 vs with feedback 42:22 ~ 2
- Remains to be seen how other stellar properties compare

- The Future:
- Self-gravitating radiation magnetohydrodynamical simulations
- Statistics as good or better than observational surveys
- This work was conducted as part of the EURYI scheme award. See www.esf.org/euryi
- It was also partially funded by a 2003 Philip Leverhulme Prize
- The calculations were performed on the UK Astrophysical Fluids Facility (UKAFF) and the University of Exeter Supercomputer

