Brown Dwarf Formation from Early Ejection: Results from Recent SPH Simulations

Matthew Bate University of Exeter

Stellar Properties

Ser.

- Distribution of stellar masses
 - Observed to be relatively invariant, at least in our Galaxy (Kroupa 2001; Chabrier 2003)
- Star formation rate and efficiency
 - Observed to be 3-6% of gas mass per free-fall time (Evans et al. 2009)
- Fraction of binary and multiple stars
 - Observed to be an increasing function of primary mass
 - Separations, mass ratios, eccentricities
 - High order systems (triples, quadruples)
- Protoplanetary discs
 - Masses, sizes, density distributions

Radial Distributions of Properties

- Half-mass radius is just 10,000 AU (0.05 pc)
- No significant mass segregation in the cluster or halo
 - Contrary to the usual picture of competitive accretion, perhaps due to the recent mergers of sub-clusters
 - Binary fractions decrease & velocity dispersion increases
 - But only outside 3 half-mass radii
 - Kohler et al. 2006 investigated ONC binaries at 1-2 half-mass radii

JK Astrophysical

Fluids Facility

Quantity / Distance range	< 1000 AU	1000 - 3000 AU	$3000 - 10^4 \text{ AU}$	$1 - 3 \times 10^4 \text{ AU}$	$3-10 \times 10^4 \text{ AU}$	$> 1 \times 10^5 \text{ AU}$
Median mass $[M_{\odot}]$	0.18	0.024	0.035	0.056	0.054	0.045
Upper quartile mass [M $_{\odot}$]	0.30	0.091	0.098	0.15	0.18	0.095
Maximum mass $[M_{\odot}]$	5.3	2.9	3.7	2.5	2.1	2.0
Velocity dispersion [km/s]	6.1	4.0	4.2	4.3	8.2	13.8
Number objects	8	56	569	408	172	41
Number binaries	2	8	68	55	13	0
Binary fraction	0.33	0.167	0.136	0.156	0.082	0.0

Velocity Dispersion

- No strong dependence of stellar velocities on stellar mass
 - VLM objects have a smaller velocity dispersion than stars (80%) (c.f. Joergens)

• Binaries have ~60% of the velocity dispersion of single stars

Stellar Mass Distribution

- Competitive accretion/ejection gives
 - Salpeter-type slope at high-mass end
 - Low-mass turn over
- ~4 times as many brown dwarfs as a typical star-forming region
 - Not due to sink particle approximation results almost identical for different sink parameters

UK Astrophysical **IMF: Competitive Accretion and Ejection**

Stars and brown dwarfs

ER

- Form with opacity limited masses, accrete to larger masses igodol
- Final masses depend on how long they accrete
- Accretion typically terminated by ejection

EXETER

UK Astrophysical

Multiplicity as a Function of Primary Ma

- Multiplicity fraction = (B+T+Q) / (S+B+T+Q)
 - Observations: Close et al. 2003; Basri & Reiners 2006; Fisher & Marcy 1992; Duquennoy & Mayor 1991; Preibisch et al. 1999; Mason et al. 1998

105

105

Star/VLM Object Separation Distributions

- Distributions depend on sink particle size
- Reducing sink particle size from 5 to 0.5 AU
 - Produces log-normal stellar separation distribution
 - Increases binary fraction for VLM objects
- Also separations of VLM objects decrease with time

VLM Binary Eccentricity Distribution

- Trent Dupuy: presented first eccentricity distribution for VLM binaries
 - Tend to have low eccentricities

Observations

Calculation (accretion radii 0.5 AU)

VLM Companions to Stars

- Frequency of ~10%
 - Independent of primary mass (from 0.1 M_{\odot} up to solar masses)
 - BUT, typical separation increases with primary mass
 - 0.1-0.2 Mo: 3/14 systems have separations < 30 AU
 - 0.2-0.5 M_{\odot} : 3 at < 10 AU, 1 at 50 AU, 3 at > 1000 AU
 - 0.5-0.8 M_•: 3 with separations 27-65 AU
 - Solar type primaries: 2 cases, both with separations >1000 AU
- Impossible to examine increased frequency of binary VLM companions to stars with current statistics
 - Stamatellos & Whitworth 2009 type simulations

Discs: Closest Encounter Distance

- Dense star cluster produces many close encounters, truncating discs
- All stars > 1 M_{\odot} have had encounters closer than 2 AU
 - Doesn't mean don't have discs if not ejected, discs often re-form through accretion
- Brown dwarfs: encounter distances from < 1 AU to > 100 AU
 - Those without close encounters may have large discs

UK Astrophysical

Hydrodynamical Star Formation

- Can now perform simulations that form large numbers of objects
- Statistical uncertainties are the same as from observations
- Comparison with observations shows what we get right and wrong
 - Many properties and trends are in good agreement with observations
 - General form of the IMF
 - Multiplicity with primary mass
 - Trends for separation and mass ratio distributions
 - Orbital planes of triple systems
 - Two glaring inconsistencies:
 - Too many brown dwarfs
 - To few wide, unequal mass solar-type binaries
- Need to move on with additional physics

Star Cluster Formation with Radiative Feedback

- Repeat Bate, Bonnell & Bromm 2003, Bate & Bonnell 2005
 - 50 M $_{\odot}$ molecular clouds, Decaying `turbulence' P(k) \propto k⁻⁴
 - Diameters 0.4 pc and 0.2 pc, Mean thermal Jeans masses 1 M_{\odot} and 1/3 M_{\odot}
 - 3,500,000 SPH particles
- Sink particles
 - Radiative transfer calculations: Sink Radii 0.5 AU, no gravitational softening
- Radiative transfer
 - Implicit, grey flux-limited diffusion
 - Separate radiation and matter temperatures, but assumes gas = dust temperature
 - See poster by Andrea Urban (S266)
 - No feedback from protostars
 - Intrinsic protostellar luminosity unimportant
 - Accretion luminosity underestimated (energy liberated from 0.5 AU to stellar surface)
 - Gives a lower limit on the effects of radiative feedback

BBB2003:Typical molecular cloud Jeans mass I M_☉, Opacity limit 3 M_J, P(k)∝k⁻⁴

BBB2003, but with Radiative Transfer

Impact of Radiative Feedback

- Bate, Bonnell & Bromm (2003)
 - "Typical" density 50 M_☉ molecular cloud (~10⁴ cm⁻³)

	Stars	Brown Dwarfs	Total
Barotropic Equation of State	23	27	50 (1.40t _{ff})
Radiative Transfer	П	2	13 (1.40t _{ff})

- Bate & Bonnell (2005)
 - Denser 50 M_☉ cloud (~10⁵ cm⁻³)

	Stars	Brown Dwarfs	Total
Barotropic Equation of State	19	60	79 (1.40t _{ff})
Radiative Transfer	14	3	17 (1.40t _{ff})

Radiative Feedback and the IMF

- Radiative feedback brings the star to brown dwarf ratio in line with observations
 - Observations suggest a ratio of 5 ± 2
 - Chabrier 2003; Greissl et al. 2007; Luhman 2007; Andersen et al. 2008
 - Simulations: 25:5 ~ 5
 - Bate 2009b
- Furthermore, dependence of the IMF cloud density is removed
 - K-S test on the two IMFs with radiative shows them to be indistinguishable

Large-scale Simulations with Radiative Feedback

- Currently re-running Bate (2009a) with radiative feedback
 - 500 M_☉ cloud, using 35,000,000 SPH particles
 - Resolves opacity limit for fragmentation
 - Follows:
 - All binaries (0.02 AU) and discs to ~I AU radius
- Results so far
 - Just reached 1.06 initial cloud free-fall times
 - Formed 89 stars and brown dwarfs
 - Including I binary brown dwarf system: 15 AU separation, 0.04 eccentricity
 - Original calculation at the same time: ~300 stars and brown dwarfs

Large-scale Simulations with Radiative Feedback

- Comparison of the IMFs obtained without and with radiative feedback
 - As expected, many fewer brown dwarfs
 - Stars to brown dwarfs without radiative feedback: 74:154 ~ 1/2 vs with feedback 42:22 ~ 2
 - Remains to be seen how other stellar properties compare

• The Future:

- Self-gravitating radiation magnetohydrodynamical simulations
- Statistics as good or better than observational surveys

- This work was conducted as part of the EURYI scheme award. See <u>www.esf.org/euryi</u>
- It was also partially funded by a 2003 Philip Leverhulme Prize
- The calculations were performed on the UK Astrophysical Fluids Facility (UKAFF) and the University of Exeter Supercomputer