A Spitzer Search For Disks Around Young Planetary Mass Objects

P. Harvey, K. Allers, D. Jaffe, and M. Liu
Outline

- Allers et al (2006) found young BDs from combined Spitzer c2d data and deep IJHK imaging
- Lower mass limit set by c2d sensitivity at 5.8 and 8µm to confirm youth via CS disks
- Our new program selected a 0.5 deg² sub-region of the original program for deep Spitzer IRAC imaging (missed MIPS due to LHe end!)
Motivation

- What are the lowest mass objects that can form like stars? And how do they form?
- What is the shape of the IMF past the currently observed likely turnover at low mass?
- What are the observational characteristics of young, planetary mass brown dwarfs? And what do their atmospheres look like?
Motivation (cont’d)

- How do disks evolve and possibly form planets around very low mass central objects?
- What are the physical properties of disks around very low luminosity objects?
- Are the “stars” cool enough that the dust extends all the way in to the stellar surface?
Motivation – $2M_J$ Model Plus Disk
Program Design

- Allers et al (2006) were able to find criteria that resulted in a 18/19 success rate for finding young, low-mass dwarfs and BDs in nearby star-forming regions.
- They chose parts of 3 clouds where extinction was moderate in order to be able to use I band data.
- Used colors/magnitudes plus careful examination of images.
Allers et al Selection Criteria
Program Design

- We extended this concept with much deeper 5.8/8\(\mu\)m photometry with Spitzer and improved S/N at 3.6/4.5\(\mu\)m
- We used the existing IJHK photometry from the original Allers study since it already went deep enough in all those bands to be a good match to Spitzer’s sensitivity
Program Design (cont’d)

- Used IRAC with 100 sec frame times and 9 dithers for total intg time of 900 sec, ~20 * c2d
- Chose area containing sources from original study and with lower background and few bright sources, 0.5 square degrees
Observed Area
New Sensitivity Limits
Results – A High Probability Source
Results – High Probability But No Band 4 (8µm)
Results - A Possible Candidate
Results – Select Relative to FD’s

- FD contamination?
- Caballero et al (2008) estimate ~ 1 foreground field dwarf
- Background giants? No, \(\ell \sim 18 \)
Results – Select For Disk Excess
Luminosities of Candidates

- Allers ‘06 objects
- Likely New
- Possible New
Next Steps – W Filter at UH 2.2m
(Allers and Liu)
Next Steps – W Filter at UH 2.2m
(Allers and Liu)
One Source Already Confirmed

- W-filter
- IRTF Spex
Next Steps – Followup Spectra

- Multi-object I band spectra
- For faintest few objects considering VLT X-Shooter?
- Future – JWST? ALMA?
Summary

- We have identified 18 candidates
- Colors/Magnitudes consistent with down to 1 MYr 2M_J Brown Dwarf (Models)
- Narrowband photometry being used to provide further confirmation
- Next step to obtain near-IR spectra
- Further analysis of data set may find more candidates