

Searching for bona-fide proto brown dwarfs (BDs)

Aina Palau

David Barrado y Navascués, María Morales-Calderón, Amelia Bayo, Itziar de Gregorio-Monsalvo, Carlos Eiroa, Nuria Huélamo, Hervé Bouy, Oscar Morata, L. Schmidtobreick

Brown dwarf formation, ESA-CONSTELLATION workshop, Noordwijk

2009 Sept 10th

Outline

1. The problem

- 2. Strategy to search for proto-BDs
 - Spitzer
 - IRAM30m, CSO
- 3. A proto-BD candidate
 - Observations: CAHA, VLA, Kitt Peak
 - Results: SED, radial intensity profile

1. The problem

50 AU

Question: can we find BDs with the properties of the youngest low-mass stars?

If yes: favor scaled-down formation

L1014-IRS

Young et al. (2004)

Bourke et al. (2005)

Huard et al. (2006)

Shirley et al. (2007)

- If yes: BDs should be associated with envelopes, disks, outflows/jets...
- Encouraging: VeLLOs have similar properties to low-mass YSOs

Outline

- 1. The problem
- 2. Strategy to search for proto-BDs
 - Spitzer
 - IRAM30m, CSO
- 3. A proto-BD candidate
 - Observations: CAHA, VLA, Kitt Peak
 - Results: SED, radial intensity profile

2. Strategy

Strategy to search for proto-BDs (I):

search around 8 Class 0/I sources from Froebrich 2005 (ApJSS, 156, 169 sample) at dist < 300pc:</p>

Object ^a	β	T _{bol} (K)	L_{bol} (L_{\odot})	$L_{\rm smm}/L_{\rm bol}$	$M_{ m env}$ (M_{\odot})	Class ^b
L1448 I2	1.0	43	6.0	0.030	1.0	0/1 (yyn6)
L1448 NW	2.1	<30	$<\!2.8$	>0.16	1.2	0 (yyy6)
L1448 N	0.6	70	10	0.028	2.2	0/1 (yyn4)
L1448 C	1.4	$<\!\!60$	8.3	0.029	1.1	0 (yyy6)
RNO 15 FIR	1.5	63	9.7	0.016	0.45	0/1 (yyn5)
RNO 15	1.5	<73	15	0.013	0.43	0 (yyy6)
NGC 1333 I1	1.9	<85	18	0.010	0.39	0/1 (?yy6)
IRAS 03256+3055	0.3	<61	1.0	0.043	0.34	0 ^c (yyy5)
NGC 1333 I2	1.4	<51	43	0.010	1.5	0 (yyy7)
NGC 1333 I4 A	0.3	<42	18	0.037	5.8	0 (yyy6)
NGC 1333 I4 B	1.2	<43	17	0.036	3.1	0 (yyy6)
IRAS 03282+3035	0.5	<63	1.3	0.062	0.73	0 (yyy5)
HH 211 MM	1.3	<33	3.6	0.046	0.80	0 (yyy6)
B213	0.7	72	< 0.39	< 0.028	0.19	0/1 (yyn5)
IRAM 04191	0.6	<36	0.12	0.208	0.48	0 (yyy5)
L1551 IRS 5	1.2	92	22	0.008	1.6	1 (nyn4)
L1551 NE	0.5	91	4.2	0.009	0.57	1 (nyn5)
IRAS 04325+2402	1.4	73	0.97	0.057	0.52	0/1 (yyn4)
L1527	1.6	56	1.9	0.056	0.80	0/1 (yyn4)

 TABLE 1

 Obtained Object Parameters, Sorted by SED Quality

2. Strategy: region with high ratio of Class I vs Class II

- Strategy to search for proto-BDs (II): for each Froebrich region...
 - Spitzer archive, point sources, select sources detected in 4 IRAC bands
 - build IRAC color-color diagram (Allen et al. 2004)
 - compute ratio Class0/I vs ClassII

2. Strategy: substellar objects?

- Strategy (III): the best Spitzer sources in B213
 - B213: build mag-color --> substellar nature (Baraffe et al. 2003)
 - B213: cross Spitzer with 2MASS: SEDs from 1 to 24 μm :
 - steep SED
 - no 2MASS
 - B213: rejection of clear
 extragalactic contaminants
 from mag-color (Gutermuth et al. 2008) 10

12 Spitzer substellar sources most embedded and being no clear background objects

We observed these 12 targets with the IRAM30m telescope

2. Strategy: IRAM30m observations

• We observed the 12 targets from B213 with the IRAM30m Telescope:

ON-OFF 1.2 mm observations: May, Oct, Dec 2007

Nov 2008 Director's Time

Table 2. 1.2 mm observations with the IRAM 30 m

Source	Date	Taxo au	Skynoise (K)	Flux (m Iv)	S/N
Source	Date	4250 GHz	(13)	(mgy)	5714
J041757	28/05/07	0.303	110	1.40 ± 1.33	
	06/10/07	0.330	79	3.54 ± 1.80	
	06/10/07	0.379	42	2.84 ± 1.80	
	14/11/08	0.290		0.93 ± 1.89	
	14/11/08	0.290		1.62 ± 1.03	
\frown	weighted mean			1.891 ± 0.72	2.63
J042118	28 11	0.403	40	2.92 ± 1.41	
	29 11	0.305	39	1.41 ± 1.39	
	weighted mean			2.15 ± 1.00	2.15
J041726	28 05	0.375	104	-0.60 ± 1.09	< 1
	06 10	0.330	65	-1.05 ± 1.23	< 1
J041913	07 10	0.379	44	0.48 ± 1.22	< 1
J041740	28 05	0.303	144	0.22 ± 1.22	< 1
	07 10	0.379	46	0.04 ± 1.19	< 1
J042019	28 05	0.303	126	-0.13 ± 1.07	< 1
J042123	28 11	0.403	37	-0.28 ± 1.10	< 1
J041938	28 05	0.303	93	-0.57 ± 1.13	< 1
J042016	28 11	0.403	37	-1.28 ± 1.12	< 1
J041828	07 10	0.379	53	-1.47 ± 1.16	< 1
J041836	28 05	0.303	145	-1.82 ± 1.43	< 1
J041847	07 10	0.379	66	-2.11 ± 1.17	< 1

• Combining the good data of all these periods we end up with: $S_nu(1.2mm) = 1.9 + - 0.7 \text{ mJy}$ $S/N \sim 2.6 \text{ for } J041757$ $S_nu(1.2mm) = 2.1 + - 1.0 \text{ mJy}$ $S/N \sim 2.1 \text{ for } J042118$

2. Strategy: CSO

CSO observations: imaging at 350 μm

Declination (J2000)

 J042118: compact submm source:
 Menv = 0.2—1.3 Mjup (for Td 12—25 K)
 Size ~ 1500 AU

2. Strategy: CSO

CSO observations, Jan 2008: Imaging at 350 μm

J041821: compact sub- J041757: partially extended mm source:
 Menv = 0.2—1.3 Mjup
 Size ~ 1500 AU
 Size ~ 4500 AU

Search for the most embedded: follow up of J041757

Outline

- 1. The problem
- 2. Strategy to search for proto-BDs
 - Spitzer
 - IRAM30m, CSO
- 3. A proto-BD candidate
 - Observations: CAHA, VLA, Kitt Peak
 - Results: SED, radial intensity profile

- CAHA-Omega2000 observations:
 Deep imaging at J, H, K bands
- J041757 splits up into **3 NIR sources**: A, B, C
 - A, B are point sources
 - C faint and extended in the opt and NIR
 - ISAAC also 2.19 μm (cont): is C an H2 knot? must be confirmed spectroscopically (time allocated)

3. A proto-BD candidate

3. A proto-BD candidate

VLA D-config observations Imaging at 6 cm, beam ~ 16": Compact cm source...

spectral index: -0.7 +/- 0.8 --> does not discriminate btw thermal/non-thermal cm also in L1014-IRS VeLLO (Shirley et al. 2007)

3. A proto-BD candidate

VLA D-config observations: Imaging at 6 cm, beam ~ 16": Compact cm source...

67.40⁸

VLA B-config observations: Imaging at 6 and 3.6 cm, beams ~ 2" Compact cm sources assoc with B!

3. A proto-BD candidate

- Kitt Peak obs: Dec 2008, beam ~ 1': CO(1—0)
 - Emission in the 1.7—4.2 km/s range: blue wing, seems to be associated with the object
 - No significant emission within a 600 km/s wide band, above 0.36 K
- Dust emission at 350 µm most likely associated with these gas component in Taurus
 Scheduled obs. with IRAM30m to do CO(2—1) map

3. A proto-BD or a background source?

Component A seems to belong to Taurus, and component B could be

3. A proto-BD or a background source?

3. A proto-BD candidate?

Spectral Energy Distribution:

Using the criteria to classify low-mass YSOs, J041757 is a Class 0/I BUT envelopes of proto-BDs are not well known and may be different from those of Class 0 YSOs...

≕59° 58° 57° 58° 55° Right Ascension (J2000)

• Radial intensity profile for J041757:

3. A proto-BD candidate

- Preliminary results:
 - comparison with radial profiles of well-known Class 0 YSOs, proto-BD profile seems shallower BUT NEEDS TREATMENT OF T(R), ISRF

CONCLUSIONS

- Selection strategy from Spitzer data yields candidates to proto-BDs
- If J041757 is confirmed as a proto-BD in Taurus:
 - Extremely low luminosity
 - proto-BD embedded within an envelope, as Class 0/I YSO
 - BUT envelope seems to have
 - radial intensity profile different from that of Class 0/I YSOs
- Future work:
 - Model of the envelope as:
 - $T = T_0 (R/R_0)^{-q}$
 - $\rho = \rho_0 \ (R/R_0)^{-p}$
 - To simultaneously fit the SED and the radial intensity profile
 - Confirm outflow
 - Search for dense gas, study kinematics: infall?

Thank you so much!