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ABSTRACT 
Long-term preservation of software components is a key aspect of preservation of data, 
as software required for processing and analyzing data also needs to be preserved in 
order to maintain the re-usability of data in future. However, software preservation to 
date is a relatively underexplored topic of research and frequently seen as a secondary 
activity, mainly due to the inherent complexity of software artifacts, which is generally 
deemed a major barrier to their preservation.  In this paper, we present a conceptual 
framework to capture and organise the main notions of software preservation, which are 
required for a coherent and comprehensive approach. In particular, the framework 
introduces a notion of adequacy of preservation, an aspect of the OAIS concept of 
authenticity which tests the future performance of software against specified preservation 
properties. We also evaluate the application of the software preservation framework in 
the context of a use case involving the British Atmospheric Data Centre (BADC). 
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INTRODUCTION 
Preservation of software components is a key aspect of preservation of data, as processing and analysis 
software frequently needs to be preserved to maintain the usability of data.   However, only a small part 
of the research which has been carried out to date on the preservation of digital objects has looked 
specifically at the preservation of software.  This is because the preservation of software has been seen 
as a less urgent problem than the preservation of other digital objects, and also the complexity of 
software artefacts makes the problem of preserving them a daunting one.  Further, the preservation of 
software is frequently seen as a secondary activity and one with limited usefulness. 

In this paper, we discuss some of the motivations and approaches taken to preserve software.  We also 
discuss some framework concepts of what it means to preserve software, in particular a notion of 
adequacy of preservation, an aspect of the OAIS concept of authenticity which tests the future 
performance of software against specified preservation properties.  In addition, we analyse the 
relationship of this software preservation framework with the different components of the OAIS 
information model in terms of their applicability to the retrieval, reconstruction and replay of software 
on a future technological platform. We then identify within the framework, a number of additional 
properties of software against which the adequacy of its behaviour, and hence its preservation may be 
measured in future.   

We go on to discuss the application of the software preservation framework in the context of a use case 
involving the British Atmospheric Data Centre.  This includes evaluating the overall efficiency of the 
framework against a number of BADC software, specifically in terms of its relevance (to the software 
that it is applied to) and sufficiency (of the information recorded) for long-term preservation of software, 
considered within the context of the BADC’s approach to accommodating changes in the technological 
environment to ensure effective long-term software maintenance and re-use. 
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WHY PRESERVE SOFTWARE? 
A key question to answer with respect to preservation of software is why it is a useful thing to do.  After 
all, software is known to be both very fragile and very disposable, especially when changes occur in 
related environment, such as hardware, operating system, versions of systems (e.g. programming 
languages and compilers) and configuration change. For example, compiling with a different floating 
point module may produce quite different results in the analysis. Also, in the face of environment 
change and the complexity of large-scale systems, developers often throw away previous software and 
start again from scratch, as it may be easier to write new software (given the original data is preserved) 
rather than wrestle with legacy.  

Together, these make the preservation of software appear both difficult and unnecessary. However, there 
are also good reasons to preserve software, especially in a research and teaching environment. Some of 
these reasons are as follows. 

Preserve a complete record of work: Software is frequently an output of research, where it is typically 
deemed as means of testing the hypothesis of research. This is particularly the case in Computer 
Science.  In such cases, software should be preserved along with other research outputs, e.g. thesis to 
ensure preservation of the complete work. 

Preserving the data: Software may need to be preserved to support the preservation of data and 
documents, to keep them live and reusable. For example, the data holding for NASA’s Planetary Data 
System (PDS) Geosciences Node relies on various web-based services and software for its effective 
discovery and accurate use. Development of these services is time-consuming and requires intimate 
knowledge of the mission and the data, which may be impossible or extremely difficult and expensive to 
reproduce in future. Therefore, ensuring long-term reusability of this data holding would need these 
services and software to be properly preserved [1]. 

Handling Legacy: Perhaps the prime motivation to preserve software for most organisations is to save 
effort in recoding.  Legacy code still needs to be used, due to its specialised function or configuration 
and it is frequently seen as more efficient to reuse old code, or keep old code running in the face of 
software environment change than to recode. This is certainly the reason for the maintenance of most 
existing software repositories, and a significant part of the effort which is undertaken by software 
developers both in-house within end-user organisations, and also within software houses.  

A CONCEPTUAL FRAMEWORK FOR LONG-TERM SOFTWARE 
PRESERVATION 
We have developed a conceptual framework that is intended to comprehensively address the core 
aspects of software preservation and identify the software properties needed to retrieve a software 
artifact in future, reconstruct it and measure the adequacy of its preservation for the purpose of replaying 
(i.e. reusing) it on a future technological platform.  The framework comprises the following two 
conceptual models that express these notions: 

A Conceptual Model for Software 
We recognize that a conceptual data model is required to determine the level of granularity at which 
preservation properties of software can be identified, and provide an understanding of the relationship 
between digital objects, thus giving traction on handling the complexity of the objects, a particularly 
important aspect in handling software.  Therefore, we have developed a general model for software 
digital objects that is intended to provide a comprehensive view of the underlying dependencies of 
software, and thus help identify its preservation properties. The model consists of four major conceptual 
entities which together describe a complete Software System.  These are Product, Version, Variant and 
Instance (Figure 1).    

Product:   The product is the whole top-level view of the system, and is how the system may be 
commonly or informally referred to.  Products can vary in size and can range from a single library 



function (e.g. a function in the NAG library [2]), to a very large system with multiple sub-products with 
independent provenances (e.g. Linux). 

Version: A version of a software product is an expression of the product which provides a single 
coherent presentation of the product with a well defined functionality and behaviour.  Note also that in 
composite products, the sub-products will themselves have a number of versions which will be related to 
versions of the complete product.  These releases will not necessarily be synchronised, so the 
relationship between versions of sub-products need to be captured.  

 
Figure 1: The Software Component Conceptual Model 

Variant: Versions may have a number of different variations to accommodate different operating 
environments, thus we define a Variant of the product to be a manifestation of the system which changes 
in the software operating environment, for example target hardware platform, target operating system, 
library, and programming language version.  In this case, the functionality of the version is maintained 
as much as is practical; however, due to different behaviour supported by different platforms, there may 
be variations in behaviour, in error conditions and user interaction (e.g. the look and feel of a graphical 
user interface). It may be arguable that in some circumstances Versions are subordinate to Variants, and 
in others we may wish to omit one of these stages such as software which is only ever targeted at one 
platform.  But it is worth distinguishing the two levels, as it makes a distinction between adaptations of 
the system largely to accommodate change in functional properties (versions), with those which are 
largely to accommodate change in properties of the operating environment (variants). 

Instance:  An actual physical instance of a software product which is to be found on a particular 
machine is known as an Instance.  It may be also referred to as an installation, although there is no 
necessity for the product to be installed; a master copy of stored at a repository under a source-code 
management system may well not be executable within its own environment.   

All of the entities in the above conceptual model of software which form a software system are 
composite.  Some of them may be subsystems, with sub-products.  All systems however, will be 
constructed out of many individual components, e.g. source, binary, etc. (Figure 1).   A component is a 
storable unit of software which when aggregated and processed appropriately, forms the software system 
as a whole. Logical components typically (but not necessarily always) roughly corresponds with a 
physical file (a unit of storage within an operating system’s memory management).  However, multiple 
components can be stored within in one file (e.g. a number of subroutines within one file) or across a 
number of files (e.g. help system or tutorial stored within a number of HTML files).  Components may 
also be formed of a number of different digital objects, (e.g. text files, diagrams, sample data) which 
themselves would have preservation properties associated with their data format.  An effective 
preservation strategy for the full software system would have to consider those digital objects as well. 
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Software Performance Model  
Given the uncertainty of long-term digital preservation, it is necessary to be able to measure the 
effectiveness of a digital preservation strategy. In the case of software we propose to base this on the 
notion of how a sufficient level of performance preserves the required characteristics of software. For 
example, in the case where a software binary is preserved, the process generating its performance 
requires the original operating software environment and possibly the hardware too, or else emulating 
that software environment on a new platform.  In this case, the emphasis is usually on performing as 
closely as possible to the original. On the other hand, when source code and configuration and build 
scripts of a software product are preserved, then a rebuild process can be undertaken, using later 
compilers and linkers on a new platform, with new versions of libraries and operating systems.  In this 
case, we would expect that the performance would not necessarily preserve all the properties of the 
original (e.g. systems performance, or exact look and feel of the user interface), but have some 
deviations from the original. Thus, a software performance can result in some properties being preserved 
and others deviating from the original or even being disregarded altogether.  Therefore, in order to 
determine the value of a particular performance, we define a notion of Adequacy for software, which 
can be said to perform adequately relative to a particular set of features perceivable by the user (or 
another software agent) (“significant properties”), if in a particular performance (that is after it has 
been subjected to a particular process) it preserves that set of significant properties to an acceptable 
tolerance.    

This notion of adequacy is usually viewed as an aspect of the established notion of Authenticity of 
preservation, which signifies that the digital object can be identified and assured to be the object as 
originally archived.  However, authenticity of preservation does not also guarantee a reliable behaviour 
from the software once reconstructed in future; it might incur a loss of some of its original features 
during its reconstruction process.  However, the software could still be used for the remaining features 
retained after reconstruction, which could be sufficient to extract an acceptable level of performance 
from the software.  An example of such software is the emulated version of the 1990’s DOS-based 
computer game Prince of Persia [3]. The term Adequacy introduced here is intended to represent this 
particular concept. 

 
Figure 2: Performance model of software and its input data 

We express this notion of adequacy of software performance in the form of a conceptual model, which is 
based on a performance model for the preservation of digital objects, defined by the National Archives 
of Australia to measure the effectiveness of a digital preservation strategy [4]. In general, the model 
illustrates the relationship between software and its input data as in Figure 2, where the reversed the 
arrow between software performance and user reflects the user’s interaction with the software product 
during execution, changing the data processing and thus its performance. So for example, in the case of 
a word processing product which is preserved in a binary format that is processed via operating system 
emulation, the performance of the product is the processing and rendering of word processing file format 
data into a performance which a (human) user can experience via reading it off a display.   The user can 
then interact with the processing (via for example entering, reformatting or deleting text) to change the 
data performance. Thus the measure of adequacy of the software is the satisfaction of the performance to 
the user when it is used to process input data, and thus how well it preserves the significant properties of 
its input data, and also preserving a known change in the performance which results from user 
interaction with the processing. 
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Applying the OAIS Reference Model to Software Preservation 
The Reference Model for an Open Archival Information System (OAIS) is an ISO standard that is 
primarily concerned with the long-term preservation of digitally encoded information. In essence, the 
underlying notions of the OAIS reference model should be applicable to the long-term preservation of 
software artefacts as fundamentally (i.e. at bit level) they are in fact digitally encoded information. 
Therefore, as illustrated in Figure 3, the OAIS information model can be applied to the process of 
rendering a preserved Data Source on a future technological platform, where the rendering of the data 
requires the use of a particular software product, which in turn requires a specific complier, to be rebuilt 
from its preserved state.  In short, the OAIS defined Descriptive Info, Representation Information (RI) 
and Preservation Description Information (PDI) [5] can be used to retrieve (discover and access), 
reconstruct (compile source code), and replay (verify authenticity and run) a software object 
respectively.  

 
Figure 3: The Relationship between the OAIS Information Model and the Software Performance Model 

However, once re-built, additional properties of the software are required to measure its adequacy for 
processing the Data Source, which in turn measures the performance of the compiler in re-building the 
software from its source code. Examples of these properties may include documentation of expected 
user interaction with the software in terms of expected inputs and outputs, information about accepted 
speed of execution and pre-defined test scripts and expected output and so on. This is not 
comprehensively addressed in the OAIS model but may be considered amongst the Preservation 
Description Information of software for demonstrating the satisfaction of significant properties, and 
thus viewed as an additional component of the OAIS information object in the context of long-term 
software preservation. 

The preservation framework attempts to identity these additional properties of software along with other 
OAIS equivalent preservation properties of software for each of the four major conceptual entities of 
software defined in the conceptual model for software discussed earlier in the paper. Details of these 
preservation properties of software can be found in [6]. 

THE BADC CASE STUDY 
The National Centre for Atmospheric Science’s British Atmospheric Data Centre (BADC) [7] is a 
NERC Designated Data Centre which currently has over 250TB of atmospheric data for the 
consumption of UK scientists and researchers [8]. In order to facilitate efficient accessibility and 
usability of these large volumes of atmospheric data, the BADC also develops, supports, and provides 
access to a variety of software, which ranges from very simple data conversion tools to highly complex 
weather prediction models. Considering the importance of the BADC software in enabling accessibility 
and interpretation of its large data holdings, effective long-term preservation (i.e. re-use) of the BADC 
datasets implies the need for appropriate preservation actions for its software. We consulted with the 
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BADC software development and maintenance team to analyse their approaches to software 
maintenance in the context of a number of their software products, such as the BADC Web Feature 
Service (WFS)1. This indicated that long-term preservation of these software products is not considered 
within the current operational remit of the BADC. On the whole, the BADC considers the long term 
archiving of software an impractical option principally due to the complex dependencies of software. It 
takes the view that it expects much current software will be superseded by newer software which will be 
capable of recreating and enhancing much of the existing analysis and access functionality. Further, the 
BADC considers the costs of preserving software, especially in terms of migrating to newer 
technological platform, to be a prohibitive factor and, hence outside their current remit. 

In general, the BADC case study reinforces the view that the inherent complexity of software is a 
significant barrier to its long-term preservation. In addition, it highlights another prohibitive factor for 
long-term preservation of software: cost of preservation. Effective preservation of a digital object over 
the long-term requires its continuous management and enhancement over its lifecycle. This involves, 
amongst other tasks, periodically assessing (and improving) the adequacy of the preservation strategy 
for ensuring effective re-construction and re-use of the digital object notwithstanding any related 
technological changes. This is expected to impose significant recurring costs on the organisation 
undertaking long-term preservation, in terms of technical resources, personnel effort etc. required. There 
likely to be even greater effort and hence costs required for the long-term preservation of software due 
to the complex dependencies between its components. Thus, for an organisation, such as the BADC who 
is already bearing the costs of maintaining and developing a wide array of software, it would be difficult 
to justify and incorporate within its current remit and budget, the additional costs of long-term software 
preservation as such an activity might not be deemed beneficial to BADC in the short-term. In addition, 
the high complexity and costs of employing currently available preservation mechanisms, such as 
migration and emulation would also add to the overall costs of long-term preservation of software.  

Therefore, we envision that the organisations, such as the BADC should benefit from the conceptual 
framework for software preservation presented in this paper.  The framework provides a comprehensive 
and organised view of the underlying dependencies of software in the context of preservation and 
facilitates accurate identification of the software properties needed for its effective preservation. This 
can aid in efficient management of the complexity of software preservation, which in turn could help 
reduce the overall costs of preservation.  Additionally, the framework could potentially be used for 
incorporating long-term preservation functions into existing systems for software development and 
maintenance, such as the one at BADC. 

Evaluating the Software Preservation Framework against BADC Software 
We have evaluated the framework against a number of BADC software, such as the BADC Web Feature 
Service (WFS). For this, we tried to collect the appropriate value(s) for each of the preservation 
properties defined in the framework for each major conceptual entity of the BADC WFS. [9] details the 
results of this exercise.  

The experience of applying the framework for software preservation to the BADC software has shown 
that the framework is sufficiently relevant to the software used as well as being adequate in terms of the 
information recorded.  However, it has also highlighted the necessity to have considerable knowledge of 
both the framework and software in question to accurately apply the framework to the software. This 
indicates a need for tools to facilitate the recording of software preservation properties by providing 
guidelines which, for example, explain the underlying concepts of the framework in a user-friendly 
manner.   

 

 
1 The BADC WFS Enables retrieving and updating geospatial data encoded in Geographic Markup Language 
(GML - http://www.opengeospatial.org/standards/gml), or any GML-based formats, irrespective of the location or 
storage media of the data. The implementation is based on the Open Geospatial Community (OGC) standard for 
Web Feature Service(http://www.opengeospatial.org/standards/wfs) 

http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/wfs
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We have attempted to address the aforementioned issue with the software preservation framework by 
developing a tool, namely Significant Properties Editing and Querying for Software (SPEQS). In 
effect, SPEQS aims to demonstrate the feasibility of incorporating capturing preservation properties of 
software within the software development lifecycle to aid its long-term preservation. It has been 
implemented in Java as a plug-in for Eclipse, a widely used Open Source interactive software 
development environment, to enable software developers to record, edit and query preservation 
properties of software directly from within the Eclipse environment.  This approach of enabling the 
developer(s) of a software project to record its preservation properties is envisaged to contribute towards 
ensuring the accuracy of the information recorded. 

CONCLUSION 
In this paper we have presented a conceptual framework to express a rigorous approach to long-term 
software preservation. We believe that this is a general and principled approach which can cover the 
preservation needs of a wide range of different software products (e.g. the BADC software products), 
including modern distributed systems and service oriented architectures, which are typically built of pre-
existing frameworks and have a large number of dependencies on a widely distributed network of 
services, many of which are outside the control of the typical user (e.g. DNS services, proxies).  We also 
believe that the performance model presented here, which introduces a notion of Adequacy of software 
performance as well as a notion of user feedback to influence the performance represents an approach to 
preserving the user interface and the user interaction model, although work is required to further develop 
that notion. In addition, further work is required to evaluate the preservation framework, especially 
against a range of software types to cover the diversity of software and to consider how to support the 
preservation of legacy software. 
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