PV 2009
Ensuring Long-Term Preservation and Adding Value to Scientific and Technical Data
1-3 December 2009

The CASPAR Finding Aids

Henri Avancini, Carlo Meghini & Loredana Versienti

CNR ISTI, Pisa
Outline

• The CASPAR Project
• Requirements
• Conceptual model
• Architecture
• FIND in CASPAR
• Conclusions
The CASPAR Project

• The CASPAR project is mainly based on standard ISO: 14721:2003 OAIS

• In this perspective, its Architecture is defined for
 - Managing key concepts of the OAIS reference model
 - Supporting main functionality identified in the OAIS functional model

• Moreover, the CASPAR project aims to define, and implement, interfaces and functionally independent components
The Consortium
The CASPAR Solution

Facade Layer

- Information Package Mngt
- Communication Mngt
- Information Access
- Designated Community & Knowledge Mngt
- Provenance Mngt
- Security Mngt

The CASPAR Foundation

- KeyComponents
- Framework
- Platform
The CASPAR Architecture

Key Components
- GapManager
- SemanticWeb
- Packaging
- DataStores
- DataAccess&Security
- Orchestration
- DigitalRights
- Authenticity
- RepInfoToolbox
- Registry
- FindingAids
- Virtualisation

Framework
- CASPAR Service Factory
 - Application Server: Tomcat, Glassfish, WASCE
 - Development Framework: JAX-WS, GWT, Ant
 - Development Management: Hudson and JTrac

Platform
- DBMS: H2, Postgres
- Java Platform
- Operating System: Linux, Unix, Windows, Mac
The CASPAr Workflow
Outline

• The CASPAR Project
• Requirements
• Conceptual model
• Architecture
• FIND in CASPAR
• Conclusions
Requirements

• Maximize usability
 – included the archives which would like to enhance the finding aids that are already in place.

• Independence from data languages
 – Data Definition Language
 – Data Manipulation Language (including Query Language)

• Expressivity of the language for representing Description Information

• Adherence to standards for wide adoption and long lifetime
Outline

• The CASPAR Project
• Requirements
• Conceptual model
• Architecture
• FIND in CASPAR
• Conclusions
The FIND conceptual schema

• The CASPAR Finding Aids is a CASPAR key component that provides the Data Management functionality of the OAIS Reference Model (discovery of AIPs).

• The FA is based on two basic components:
 – Finding Registry, and
 – Finding Manager.
Finding Manager

- A Finding Manager supports the management of Description Information, and is bound to a language for defining and for querying DescInfo.
 - A Finding Manager may talk (relational + SQL)
 - another one (RDF + SPARQL)
 - another one (XML + Xquery)
- Every Finding Manager registers with at least a Finding Registry in order to be discovered by applications.
A Finding Manager supports two main functionalities:

- **Management of DesclInfo:**
 - At the schema level:
 - Create
 - delete
 - browse DesclInfo schema elements (i.e., tables or classes or DDTs).
 - At the object level:
 - Create
 - Delete
 - Update
 - browse DesclInfo objects (*i.e.*, tuples or objects or documents).
Finding Manager

• Management of the association between DesclInfo objects and AIP identifiers, including usage of these associations for AIP discovery:
 – Create
 – Delete
 – Query
 – Browse (AIP-id, DesclInfo-id) pairs.
 – Discovery of AIPs via queries on DesclInfo objects.
Finding Manager concepts
Finding Manager

- A Finding Manager registers with a Finding Registry by providing a description of itself to the Registry.
- This description contains required information, such as:
 - (Data definition & query) language spoken by the Finding Manager.
 - Handle for invoking the Finding Manager.
 - Additionally, information concerning properties of the Finding Manager that applications consider useful for discovery purposes.
Finding Registry

A *Finding Registry* supports the publication and discovery of Finding Managers,
- in the same way a UDDI server supports the publication and discovery of Web Services.

Functionally, a Finding Registry supports two main functionalities:
1. Management of Finding Managers, i.e:
 - Registration
 - Deregistration
 - Discovery
 - Browse
 - Access
2. Indexing and retrieval of all the Description Information objects owned by the Finding Managers registered with the Finding Registry.
The global picture
Outline

• The CASPAR Project
• Requirements
• Conceptual model
• Architecture
• FIND in CASPAR
• Conclusions
Architecture

• For the needs of the CASPAR project, we implemented a Semantic-Web based Finding Manager:
 – Spoken data language: RDF
 – Query Language: SPARQL
 – Platform: RDF Suite (implemented at FORTH)
Architecture of FIND
Outline

• The CASPAR Project
• Requirements
• Conceptual model
• Architecture
• FIND in CASPAR
• Conclusions
FIND in CASPAR

<table>
<thead>
<tr>
<th>Community</th>
<th>DescInfo Schemas</th>
<th>Schema links</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA (Scientific)</td>
<td>Scientific schema (ad-hoc RDF schema)</td>
<td>http://rdfs.esrin.esa.int/EGOC.rdfs#</td>
</tr>
<tr>
<td>IRCAM (Artistic)</td>
<td>CIDOC CRM, FRBR extension</td>
<td>http://cidoc.ics.forth.gr/rdfs/CIDOC4.3.rdfs#</td>
</tr>
<tr>
<td>UNESCO (Cultural)</td>
<td>CIDOC-CRM Extension for ESRI ASCII Grid data objects</td>
<td>http://www.casparpreserves.eu/testbed/cultural/esrigrid</td>
</tr>
<tr>
<td></td>
<td>CIDOC Extension for UNESCO automatically generated from XML</td>
<td>http://www.casparpreserves.eu/testbed/cultural/ewe/epdl</td>
</tr>
<tr>
<td>Univ. of Leeds (Artistic)</td>
<td>CIDOC CRM, FRBR extension</td>
<td>http://cidoc.ics.forth.gr/rdfs/CIDOC4.3.rdfs#</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://cidoc.ics.forth.gr/rdfs/caspar/frbr.rdfs#</td>
</tr>
</tbody>
</table>
Outline

• The CASPAR Project
• Requirements
• Conceptual model
• Architecture
• FIND in CASPAR
• Conclusions
Conclusions

• A simple yet powerful Finding Aids
• Semantic web languages are good for preservation too
 – Allow for rich schemas to be used in different places of the OAIS RM
 – Extensible
• Can build on existing standard and technologies
Thank you!

• Questions?