Developing Web Interfaces for Scientific Data Archives

Tom Stein, Keith Bennett, Dan Scholes

NASA Planetary Data System Washington University in St. Louis

Dec 2, 2009

Supported under NASA Grant NNG05GB73G, "Planetary Data System Geosciences Node"

PDS Geosciences Node

- Formed in 1988 to produce, maintain, and distribute archives of geosciences-related mission data for Mars, Venus, Mercury, and planetary moons
- Data sets distributed on optical media until late 1990s
 - Exponential data volume growth
 - Increase in data updates via recalibrations
 - Improved technology supporting electronic search and distribution
 - Change in nature of archives
 - Need for correlating data as missions studied same targets with different instruments
 - Landed missions produced metadata that detailed decision-making process behind data collection

Early interfaces

- Simple design
 - Traverse archive volume directory structures
 - Download individual files
 - View archive documentation
 - Static data product pages

Developing web interfaces

- Electronic access is primary means for locating and disseminating science data
 - Directory browsing via FTP or HTTP
 - Browser-based interface (simple to complex)
 - Web services that allow client applications connections (e.g., ArcGIS, Google Earth)

Keys to developing web interfaces		
Specialized knowledge	Iterative development process	

Specialized knowledge domains

Science data

Data archiving

User interface design

Information architecture

- Must expend resources to gain missing expertise
 - Research/training
 - Adding team members

Interface development lifecycle

Define requirements

- Understand interface purpose and how it relates to science archive
 - What is intent?
 - What information is to be included?
 - How is information acquired?
 - Who are end users?
 - What are end users' expectations?

- Define
 - Data sources
 - Functionality
 - Deliverables
 - Security
 - Hardware/software limitations
 - Cost
- Create specific, attainable goals
- Incorporate use cases
 - Detail services, tasks, and functions of interface

Primary factors driving requirements		
Money resources	Time resources	

Complexity

What users are allowed to do

Integrate data from Search multiple sources Create new data

Traverse directory structure

Determine data sources

- More than just data files—integration of information from a number of sources
 - Data product metadata
 - Documentation
 - Data product documents (data provider)
 - Archive documents (data provider or archiving entity)
 - Additional documents from data collection phase (people directly and indirectly involved)

Example: daily reports from non-deterministic Mars rover and lander missions were captured to preserve knowledge and intent behind the decisions

Data quality

- Data must be well-formed and well-documented
 - Interface developers may have to invest considerable resources

Example: data from older Mars Global Surveyor's MOC instrument were reprojected into areocentric projection used by newer Mars missions

- Recast data must be clearly labeled and described
 - Change in format
 - Subset into smaller parts
 - Used to create new product

Additional considerations

- Political
- Ethical
- Access rights
- Legal (ITAR International Traffic in Arms Regulations)

Develop information architecture

- Information architecture models system in which interface is developed and made operational
- Stakeholders interact with system in different ways
 - Data providers
 - End users
 - Developers
- End users will be affected by requirements placed on them
 - Is user required to download client software?
 - Is user required to have an account for access?
- Longevity and availability are important drivers

Choose development environment

- Factors in selection of development environment
 - Information architecture
 - Size and expertise of development team
 - Technologies required to support planned interface
- Development environment maturity
 - Increase long term stability of interface
 - Minimize effort required to maintain functionality

Design the interface

- Web interface is initial entry to an archive
- Bad design can impede users, even if there is useful functionality underneath
- Users' initial perception is significant factor in success of interface

Readability

practices

• Readability elements may be considered hygiene factors

Color	Images	Other
 Color theory (principles of correct use) Physical factors (color blindness) Cultural color associations 	 Icons provide subconscious cues Too many images damage users' perceptions of professionalism 	 White space Navigation aids Text Font choice Layout

Usability

"The capability of the software product to be understood, learned, used and attractive to the user..." [ISO 9126-1]

Learnability

- First time users
- Consistency and intuitiveness

Understandability

- Expected user domain knowledge
- Common terminology
- Clear instructions

Operability

 How easily can a user find and retrieve what he or she is looking for?

Implementation, testing, and feedback

"The most well-defined interface can suffer from the reality of implementation" [Merlyn, 1991]

- New technology
- Schedule pressures
- Personnel changes
- Requirement "scope creep"

Testing

- Ongoing process during design phase
- Begin early in implementation phase and occur regularly
- Use appropriate test group
- Include stress test

Feedback

- Seek from testers prior to release
- Seek from users after release
 - Online (e-mail, forum, survey)
 - In person (science conferences)

Maintenance

- Plan for longevity
 - Design interface to be viable for many years
 - Keep documentation and unit testing procedures up to date
 - Test interfaces regularly for broken links and loss of functionality
- Prepare for "progress"
 - Development platform and server hardware/operating system may become obsolete
 - Client web browser standards may change

Eventually, there will be a time when the interface must be updated, replaced, or retired.

Enhancements

- Brought about by
 - Increased user abilities and expectations
 - Updates to technology supporting the interface
- Types of enhancements
 - New data from data providers
 - Improved versions of existing data
 - Interface enhancements based on user experiences and requests

Interface development lifecycle

Conclusion

- Require four knowledge domains
 - science data
 - data archiving
 - information architecture
 - user interface design
- Consider requirements in terms of resources
- Intentionally plan for longevity
- Involve all system stakeholders early in the process
- Maintain open communications throughout

