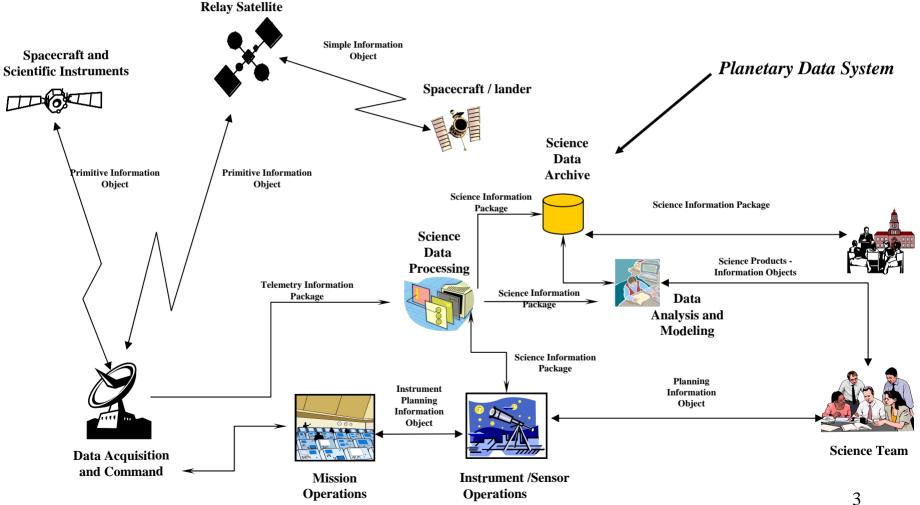
Planetary Data System

The Next Generation PDS Archive Data Standards

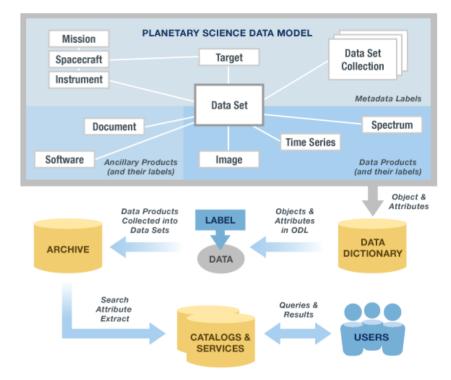

December 3, 2009

J. Steven Hughes, Anne Raugh, Mitch Gordon, Edward Guinness, Ron Joyner, Lyle Huber, Elizabeth Rye, Dan Crichton, Steve Joy, and Dick Simpson

Topics

- Background
- Modernization of the PDS
- Data Design Goals
- Data Driven Development Methodology
- Overview of the PDS4 Data Standards
- Industry Standards
- International Collaboration
- Conclusion

PDS's Role in a Distributed Space Systems Architecture


PDS participates in several concurrent missions

Project Summary (Ledand ONT-409) FY08 FY09 Mission 2 3 3 2 3 2 2 3 1 2 3 4 1 2 3 4 1 2 3 4 1 2 + 3 4 1 2 3 4 MAVEN (Mars Scout 2) Mars Science Laboratory 1-500 Study: pre-Phase A (response to proposal request) DDD Formulation: Phase A (mission and systems definition) Mars Reconnaissance Orbiter D DD Formulation: Phase B (preliminary design) Mars Express (ESA) Implementation: Phase C (design) / D (build, test, launch) Phoenix (Mars Scout 1) MER Operations: Phase E Mars Global Surveyor Extended Operations: Phase F Mars Odvssey D D Data Analysis Phobos-Grunt (Russia) Proposed Extended Operations Yinghuo-1 (China) 0/01 ExoMars (ESA) Orbiter ExoMara (ESA) Lander MarsNEXT (ESA) Mars Sample Return Smart-1 (ESA) Chang'e 1 (China) Chang'e 2 (China) Kaguya (Japan) SELENE 2 (Japan) Chandravaan 1 (India) 5 10/22 D D Chandrayaan 2 (India) Luna-Glob (Russia) DDD DD Lunar Reconnaissance Orbiter ECROSS (Lunar Impactor) LADEE Orbiter 7.091 Lunar mini-Landers MoonNEXT (ESA) MoonLITE (UK) Dawn (Discovery 95 MTH 3.91 Deep Impact (Discovery 8) EPOXI (using DI s/c) D mire 9/28 rs 1/14 D 101 Messenger D MACK 3/18 Juno (New Frontiers 2) EFIE 10/13 8/01 D ### 7114 New Horizons Pluto Stardust (Discovery 4) Standust-NExT (using Standust s/c) CF8 2/14 GRAIL 9/01 Discovery AO-2008/97 Discovery AO-2010 11.01 New Frontiers 3 Rosetta Steine B/95 D Eart 15/11 Late 7/10 C-G \$491 Kepler (Discovery 10) 2/16 Earth 6/01 Havabusa (MUSES-C) **PDS Milestones** Bepi Colombo (ESA) A: Archive Plan Signed M: MOU Signed O D D D D D D D D Cassini C: Change Lead Node R: Data Review Cassini-Huygens LAPLACE (Europa)(ESA) D: Data Delivery S: SIS Signed Ulysses-U.S. I: ICD Signed T: TIM Voyager U: Archive Plan Updated Venus Express Venus Climate Orbiter (JAXA) 6/01 Ve 12/01 Outer Planet Flagship (launch 2016)

~20 concurrent missions will need to be supported by PDS over the next decade

PDS Functions

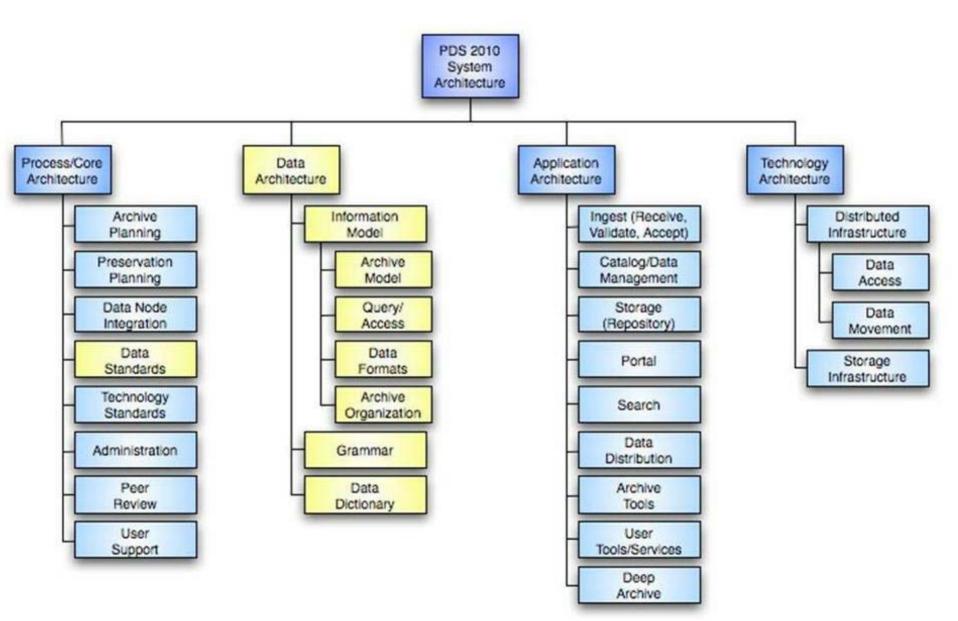
- PDS serves the scientific community by assuring the availability of high quality and scientifically useful data products
- To accomplish these goals, PDS
 - works with Data Providers to Prepare Archival Quality Data Products
 - provides Access to Data from NASA and International Missions
 - delivers Data to the Scientific Community
 - establishes a Common Data Model and Data Dictionary for Planetary Data
 - sets Archival Standards
 - preserves the Data
 - assists Scientists in Accessing and Using Planetary Data
 - is responsive to a diverse community of users
 - facilitates Education and Public Outreach

PDS Planetary Science Data Model

PDS3 Data Standards

- The PDS data standards were developed in the late 1980's to define the concepts and terms needed for archiving science data in the planetary science domain.
 - Data standards were innovative for their time however after almost two decades of use:
 - Ambiguity had crept in
 - Data formats had become obsolete
 - Usability software had become difficult to maintain
- These issues have caused significant problems for PDS operations, data providers, and endusers.

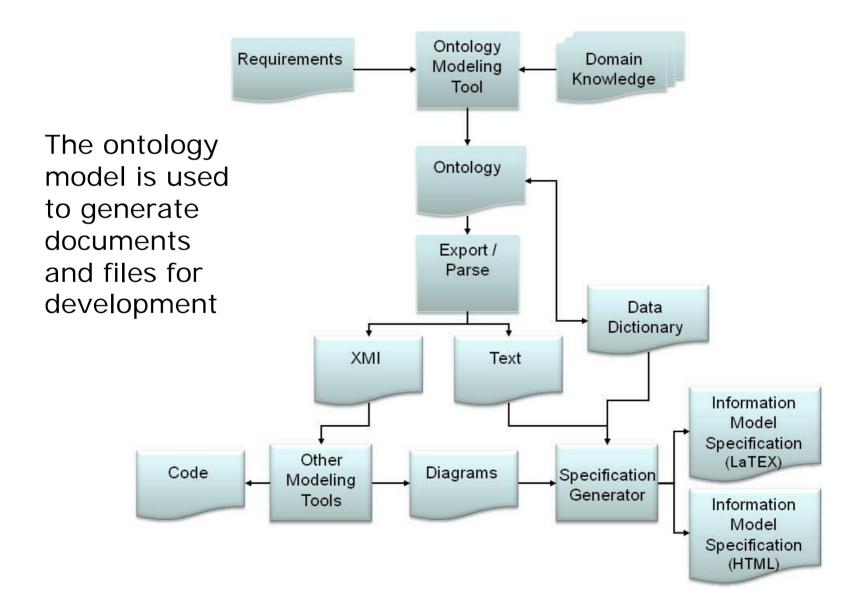
Modernization of the PDS


- "PDS 2010" is a plan to move PDS to a fully online, federated system coupled with an upgrade of the PDS Data Standards
 - The architectural approach allows for better leveraging of modern IT technologies
 - Major effort is in 2010 and 2011
- Addresses several drivers which require a modernization to continue to meet demand and users expectations (volume, number of missions, complexity of missions, international missions, better users support, etc)
- Improves "efficiency in the mission interface" and "usability" in the distribution to data to PDS users
- Better addresses the tension between "preservation" and "usability" of data
- Replaces aging technology, tools and processes

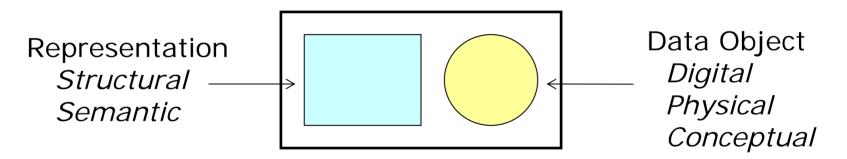
Modernization of the PDS (cont...)

Specific goals for PDS 2010

- Simplified, but rigorous, archiving standards (PDS4) that are consistent, easy to learn, and easy to use
- Adaptable tools for designing archives, preparing data, and delivering the results efficiently to PDS
- On-line services allowing users to access and transform data quickly from anywhere in the system
 - Services that allow for operation on the archive, but distribution for usability
- A highly reliable, scalable computing infrastructure that protects the integrity of data, links the nodes into an integrated data system, and provides the best service to both data providers and users


System Architecture

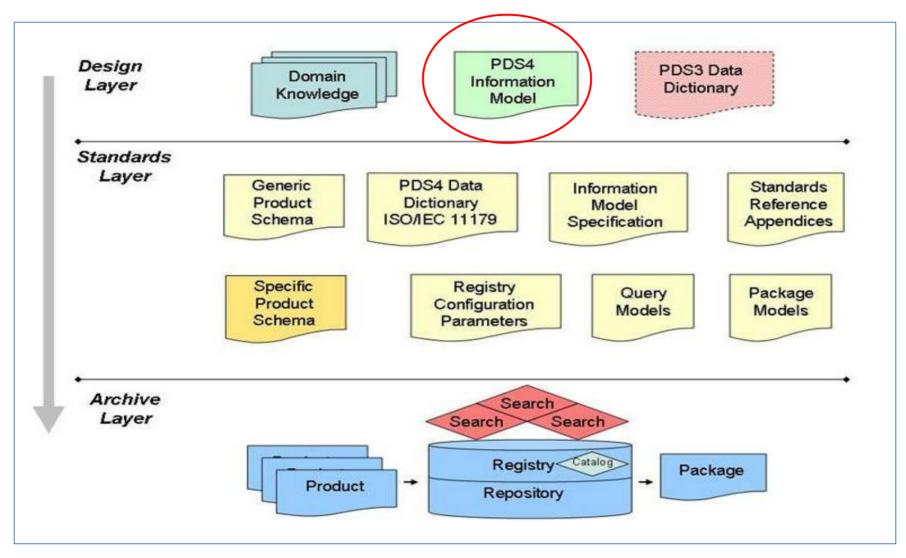
PDS4 Data Design Goals


- Define a few simple data formats
- Make the archive more stable over the longterm
- Make archive preparation more efficient for data providers
- Make the data more accessible and useful to the end-users
- Separate the data architecture from the technology and application architecture

Data-Driven Development Methodology

Overview of the PDS4 Data Standards

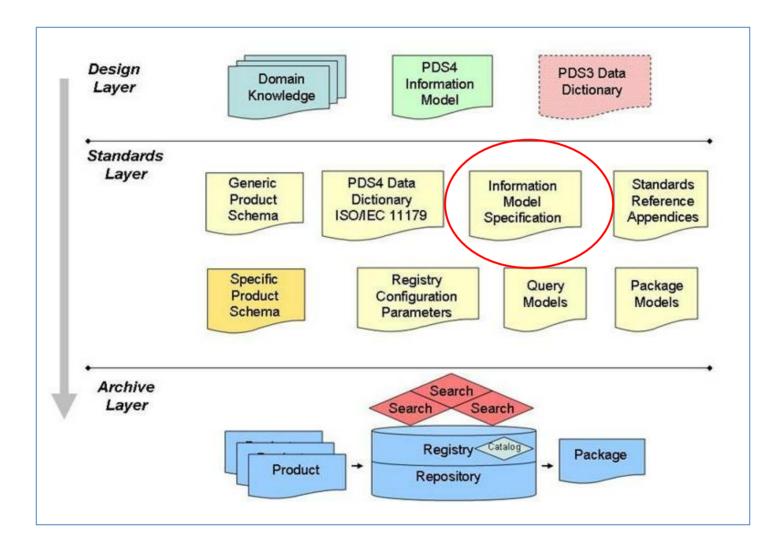
 The OAIS* Information Object unifies digital, conceptual and physical objects and their descriptions

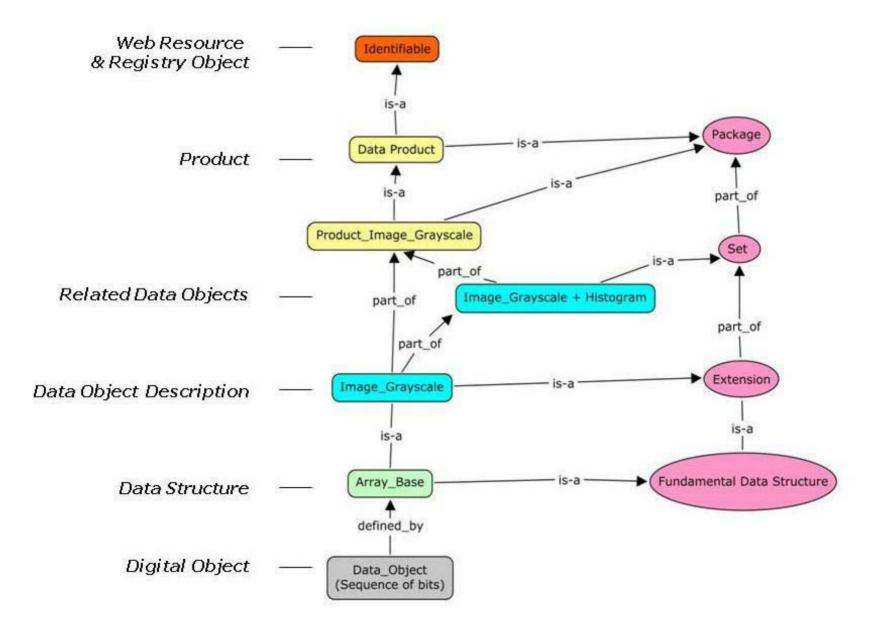


- A product is a uniquely defined package of related information objects
 - Data Product, Software, Document
- A data set is a collection of products

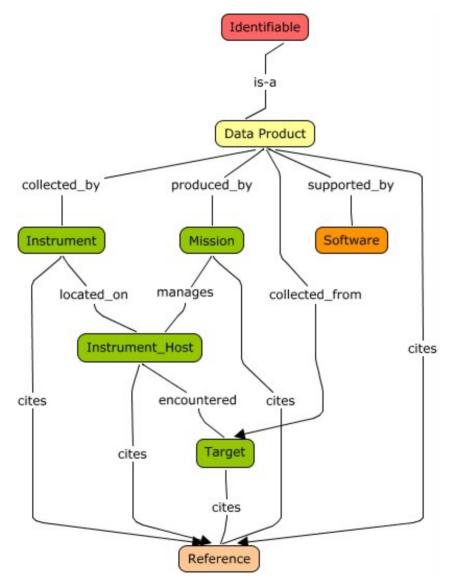
Data Structure

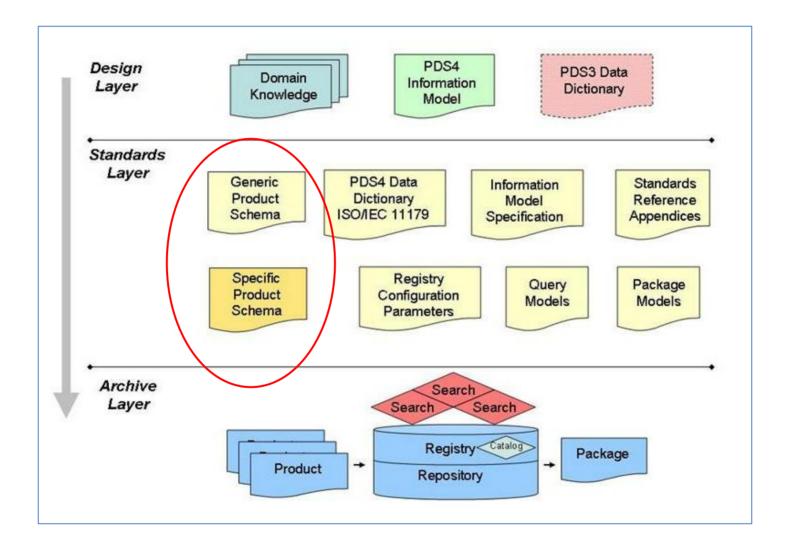
- Four simple data structures form the foundation for all digital objects
 - Array, Table, Parseable Byte Stream, Encoded File
- The definitions of these data structures should not change significantly over time.
- Extensions to and combinations of the data structures are used to describe data to be archived.
 - Examples: 2- and 3- dimensional spectra are defined as extensions to Array_Base
 - Table_Binary and Table_Character are defined as extensions to Table_Base
 - A Spectral cube is described using a combination of the simple data structures.

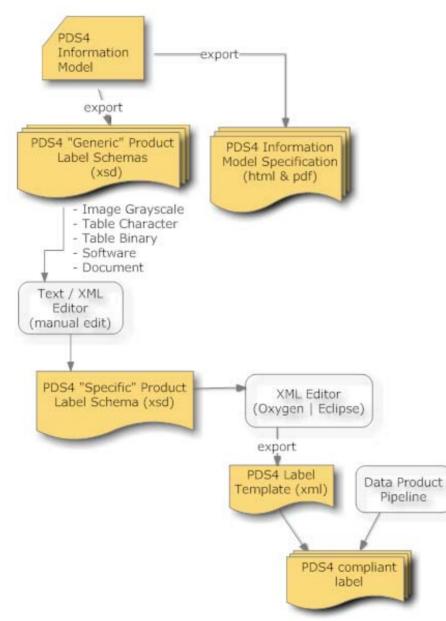

Generated Artifacts


The PDS4 Information Model

Classes Slots E Forms 🔶 Instances 📥 Queries				
CLASS BROWSER	CLASS EDITOR			
For Project: 🜒 upper_091128	For Class: 🛑 Image_Grays	cale (instance of :STA	ANDARD-CLASS)	
Class Hierarchy 🛛 🔒 👻 👻 👻	Name			Documentation
C :THING	Image_Grayscale			The Image Grayscale class is an ex
SYSTEM-CLASS				two dimensional grayscale image.
🕨 😑 Identifiable	Role			
Identifiable_Components	Concrete 😑		-	
Tagged_Set				
🔻 😑 Tagged_Digital_Object	Template Slots			
V 🗧 TDO_Structures	Name	Cardinality	Туре	
🔻 😑 Array_Base	(in) axes_order	required single	String	value=FIRST_INDEX_FASTEST
🔻 🖲 Array_2D	(i byte_order	required single	String	value={MSBF,LSBF}
V 🛑 Image_Base_2D	(iiiii) comment	single	String	
Image_Grayscale	(=) data_location	required single	Instance of Data_Locatio	n
Spectrum_Base_2D	(iiiiiiii) data_object	required single	Instance of Digital_Object	t
▶ ● Array_3D	(=) file_type	required single	String	value=BINARY
Array_Ngt3D	(iiii) first_element	required single	String	value=TOPLEFT
Table_Base	(iiiiiiii) has_Array_Axis	required multiple (2:2)	Instance of Array_Axis	
Unencoded_Stream_Base	(==) has_Array_Element	required single	Instance of Array_Elemer	nt
Encoded_Stream_Base	(==) local_identifier	required single	String	
Encoded_Stream_Base_File	(=) min_index	required single	Integer	value=0
TDO_Others	(=) number_of_axes	required si⊓gle	Integer	value=2
🕨 🛑 Tagged_Digital_Child				


PDS4 Information Model


Basic Components of a Data Product


PDS4 High-Level Concept Map

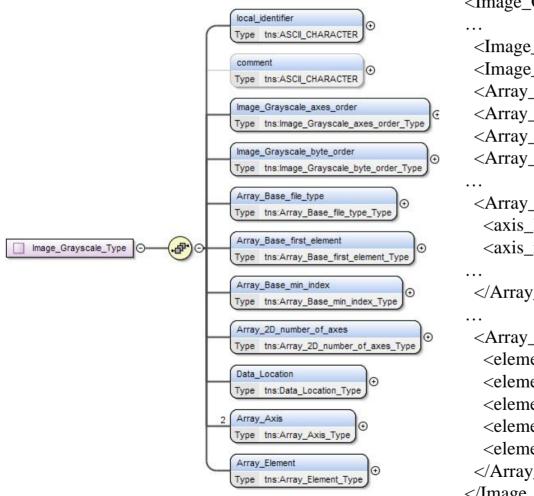

PDS4 Information Model

Diagram of the Lifecycle of a Product Label Schema

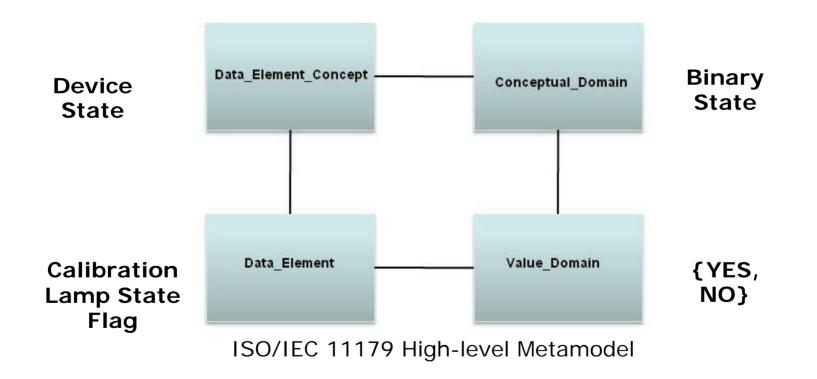
Generic Label Schema and **Resulting XML Label**

<Image Grayscale>

<Image Grayscale axes order>FIRST INDEX FASTEST <Image Grayscale byte order>MSBF <Array Base file type>BINARY <Array_Base_first_element>TOPLEFT <Array_Base_min_index>0 <Array 2D number of axes>2

<Array_Axis> <axis length>248 <axis name>LINE

</Array Axis>


<Array_Element> <element bytes>2 <element_scaling_factor>N/A <element_type>MSB_UNSIGNED_INTEGER <element unit>DATA NUMBER <element_value_offset>N/A </Array Element> </Image Grayscale>

PDS4 Information Model

PDS4 Data Dictionary

The data dictionary is ISO/IEC 11179:2003 compliant.

Attribute Definitions

title: shutter_mode_id in img:Camera_Parameters name space id: img: version: 090609n

- data element administration_record: Proto_DataDict_090609n
 - description: This element identifies the state of an imaging instrument's shutter during image acquisition. Note: the
 instrument shutter mode affects the radiometric properties of the camera.
 - data_type: ASCII_CHARACTER
- value domain administration_record: Proto_DataDict_090609n
 - minimum_value: N/A
 - maximum_value: N/A
 - minimum_characters: N/A
 - maximum_characters: 20
 - unit_of_measure_name: none
 - permissible value: BODARK begin date: 2009-06-09 end date: 2019-12-31
 - permissible value: BOTSIM begin date: 2009-06-09 end date: 2019-12-31
 - permissible value: BSIMAN begin date: 2009-06-09 end date: 2019-12-31
 - permissible value: NADARK begin date: 2009-06-09 end date: 2019-12-31
 - permissible value: NAONLY begin date: 2009-06-09 end date: 2019-12-31
 - permissible value: WADARK begin date: 2009-06-09 end date: 2019-12-31
 - permissible value: WAONLY begin date: 2009-06-09 end date: 2019-12-31
- conceptual domain Enumerated administration_record: Proto_DataDict_090609n
- data element concept administration_record: Proto_DataDict_090609n

Data Type Definitions

data Type:ASCII_DATE_TIME

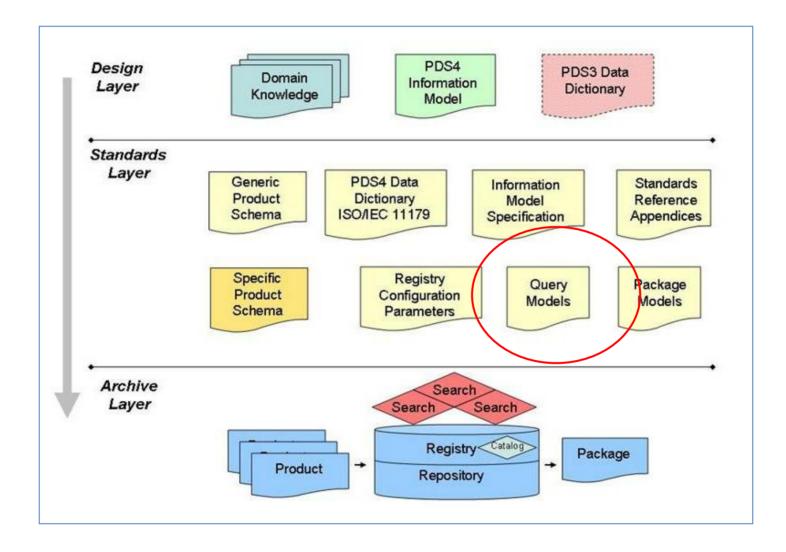
description: ASCII_DATE_TIME indicates a date time in ASCII format. data_type_unit: BYTE data_type_is_enumeration: FALSE data_type_length: null conceptual_domain: CD_Time data_type_concept: DTC_Time value_domain: VD_Date_Time

conceptual domain: CD_Time

description: The value-space of a date-and-time datatype is the denumerably infinite set of all possible points in time with the resolution (time-unit, radix, factor). The time-literal denotes the date-and-time value specified by the characterstring as interpreted under ISO 8601. - ISO/IEC 11404

data_type_concept: DTC_Time

description: Time is a family of datatypes whose values are points in time to various common resolutions: year, month, day, hour, minute, second, and fractions thereof.


value domain: VD_Date_Time

Data Dictionary Class Definition

class: Camera_Parameters - Occurs 0 to 1 Times

- attribute: local_identifier value: value
- attribute: comment value: value ^{Optional}
- attribute: edit mode id value: value Optional
- attribute: exposure duration value: value Optional
- attribute: filter_id value: 0, 1, 2, 3, 4, 5, 6, 7, 8, A, B, C1, C2, C3, D, HFM1, LFM1 Optional
- attribute: filter_name value: A, B, BLUE, BLUE-GREEN, C, CLEAR, D, E, F, GREEN, IR-7270, IR-7560, IR-8890, IR-9680, L1000_R480, L440_R440, L450_R670, L670_R670, L800_R750, L860_R-DIOPTER, L885_R947, L900_R600, L925_R935, L930_R530, L935_R990, L965_R965, LONGWAVE, METHANE-JST, METHANE-U, MINUS BLUE, MI_CLOSED, MI_OPEN, NEAR-INFRARED, NONE, ORANGE, PANCAM_L2_753NM, PANCAM_L8_440NM, PANCAM_LV_602NM, PANCAM_R8_880NM, RED, SHORTWAVE, SODIUM-D, SOLAR UV-22, T11, T15, T20, T7, T9, ULTRAVIOLET, VIOLET Optional
- attribute: gain_mode_id value: 100K, 10K, 400K, 40K, HIGH, LOW Optional
- attribute: scan_mode_id value: .055, 4.0, epf, long, short ^{Optional}
- attribute: shutter_mode_id value: BODARK, BOTSIM, BSIMAN, NADARK, NAONLY, WADARK, WAONLY Optional
- End_Class

PDS4 Information Model

Data Set Query Model – RDF

RDFS/XML

```
<rdfs: Class rdf: about = "&rdf_; Data_set"
     rdfs:label="Data_set">
    <rdfs:subClassOf rdf:resource="&rdfs:Resource"/>
</rdfs:Class>
<rdf: Property rdf: about="&rdf_; archive_status"
     rdfs:label="archive_status">
    <rdfs:domain rdf:resource="&rdf_;Data_set"/>
    <rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf: Property>
<rdf: Property rdf: about="&rdf_; data_set_id"
     rdfs:label="data set id">
    <rdfs:domain rdf:resource="&rdf_;Data_set"/>
    <rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf: Property>
<rdf: Property rdf: about = "&rdf_; data_set_name"
     rdfs:label="data set name">
    <rdfs:domain rdf:resource="&rdf_;Data_set"/>
    <rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf: Property>
<rdf:Property rdf:about="&rdf_;data_set_release_date"
     rdfs:label="data_set_release_date">
    <rdfs:domain rdf:resource="&rdf_;Data_set"/>
    <rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf: Property>
```

RDF/XML

```
rdf :stop time="1987-05-23"
dc: title="ARECIBO MOON RADIO TELESCOPE CALIBRATED ...
   rdf_:reslocation="http://pdsquery.jpl.nasa.gov/query?
     Identifier=ARCB-L-RTLS-3-70CM-V1.0&amp...
rdf :resclass="data.metadata.dataset"
dc:publisher="NASA.PDS"
rdf_:data_set_release_date="1990-06-15"
rdf :data set name="ARECIBO MOON RADIO TELESCOPE ...
rdf :rescontext="NASA.PDS"
rdf_:data_set_id="ARCB-L-RTLS-3-70CM-V1.0"
dc: language="en"
rdf_:data_set_terse_desc="ARECIBO MOON RADIO ...
dc:description="ARECIBO MOON RADIO TELESCOPE ...
dc: identifier="ARCB-L-RTLS-3-70CM-V1.0"
rdf_:start_time="1986-07-03"
dc:format="XML/RDF">
<rdf_:target_name>
  <rdf: Description rdf: about="&terms; moon">
    <rdfs: label>MOON</rdfs: label>
  </rdf: Description>
</rdf_:target_name>
```

</rdf_:Data_set>

Industry Standards Referenced and Controlling

- ISO/IEC 11179:3 Registry Metamodel and Basic Attributes specification Adopted for the data dictionary schema.
- ISO/IEC 11404:2007(E) Provides the specification for language-independent data types.
- Open Archival Information System (OAIS) Reference Model -Provides a standard for the unification of digital, conceptual, and physical data objects
- XML (Extensible Markup Language) Rules for encoding documents electronically.
- XML schema Type description language for XML documents.
- Electronic Business XML (ebXML) federated registry/repository information model Provides a standard to support federated registry/repository functions.

International Collaboration

- PDS Standards are currently used as the de facto standard for archiving planetary science data
 - ESA has adopted PDS Standards
 - JAXA, ISRO, CNSA and others are working to adopt them
- In 2006, ESA and NASA proposed and started the *International Planetary Data Alliance* to improve efficiency in coordinating data archiving for international missions and improving access to international archives
- In 2008, COSPAR passed a resolution recognizing IPDA and supporting its efforts to establish standards for archiving and sharing planetary science data
- Representatives include: ESA, NASA, ISRO, JAXA, DLR, BNSC, CNES, ASI, CNSA, RSA/IKI with Japan as the current chair

Next Steps

- IPDA Engagement January 2010
- Community Engagement February 2010
- PDS 2010 System Review March 2010
 - Data Standards Management
- Readiness Review October 2010
 - Preliminary Products
 - First mission

Conclusion

- Starting from fundamental principles and leveraging their combined experience the PDS Data Design Working Group (DDWG) has made significant progress in the development of the next generation PDS data standards.
- The use of shared ontologies and existing industry standards will provide an archive information system that will support more information interconnectedness, correlative science, and system interoperability.

THANK YOU!

Backup Slides