The early effect of environment on star-formation in XMMU J2235.3-2557

Ruth Grützbauch CAAUL University of Lisbon

Amanda E. Bauer (AAO), Inger Jørgensen (Gemini), Jesus Varela (CEFCA)

A massive evolved cluster at z=1.4

XMMU J2235.3-2557

- extended X-ray source (Mullis+05)
- tight red sequence (Lidman+08)
- very massive (M_{tot}~6x10¹⁴ M_☉), old stellar populations in cluster centre (Rosati+09)
- high mass end of LF already in place but smaller sizes (Strazzullo+10)

(One of) the most massive galaxy cluster(s) at z>1

VLT ISAAC/FORS2 Ks, z, I band image + XMM-Newton X-ray contours (©eso)

H-alpha narrow band imaging at z=1.4

Direct measure of SFR for individual galaxies?

- NIRI@GEMINI-North: narrow band filter at λ=1.57μm
 = H-alpha at z=1.39!
- 2 pointings:
 centre (R~500kpc) --> published in Bauer+11
 north-east (out to ~1.5Mpc) --> published in Grützbauch+12
- Depth: H_{broad} ~24.2, H_{narrow} ~23.4 --> limiting SFR ~ 5 M_{\odot} yr⁻¹
- Identify excess H-alpha emitters: 3σ above bg-noise, EW>20Å
- Identify red sequence galaxies via J-K colours (Lidman+08) (+ use to exclude likely stars)

*** details in Bauer+11 and Grützbauch+12 ***

H-alpha narrow band imaging at z=1.4

red: confirmed members (14) blue: all detections (163) magenta: excess emitters (32) orange circle: R_O = 200 kpc

H-alpha narrow band imaging at z=1.4

red: confirmed members (14) blue: all detections (163) magenta: excess emitters (32) ange circle: R_Q = 200 kpc

star-formation in XMMU J2235.3-2557

red: confirmed members magenta circle: H-alpha emitter orange triangle: within 200 kpc

No H-alpha emitters within a 200 kpc radius of the brightest cluster galaxy. --> quenching radius R_Q

--> coincides with extension of X-ray emission

Bauer+11, Grützbauch+12

red: confirmed members magenta circle: H-alpha emitter orange triangle: within 200 kpc

No H-alpha emitters within a 200 kpc radius of the brightest cluster galaxy. --> quenching radius R_Q

--> coincides with extension of X-ray emission

Bauer+11, Grützbauch+12

red: confirmed members magenta circle: H-alpha emitter orange triangle: within 200 kpc

No H-alpha emitters within a 200 kpc radius of the brightest cluster galaxy. --> quenching radius R_Q

--> coincides with extension of X-ray emission

Bauer+11, Grützbauch+12

red: confirmed members magenta circle: H-alpha emitter orange triangle: within 200 kpc

No H-alpha emitters within a 200 kpc radius of the brightest cluster galaxy.

No increase of SFR with distance from BCG.

Bauer+11, Grützbauch+12

Specific SFR and stellar mass

- M* from K-band magnitude
- specific SFR = SFR per unit M*
- comparison field sample at z~1.5 (Pérez-González+08, Bauer+11b):
- blue pentagons: IR-based SFRs violet triangles: UV-based SFRs

No SF at M*> $5x10^{10}$ M_{\odot}

At the same stellar mass galaxies within R_Q have lower SFRs

Only at M*<10¹⁰ M_☉ typical field SFRs are reached

Grützbauch+12

How do they look? - $\mbox{H}\alpha$

Morphologies: F775W (rest U)

Morphologies: F775W (rest U)

Morphologies: models

Morphologies: residuals

Morphology: R_{eff} and Sersic index n

Effective radius *R_{eff}* and Sersic index *n* vs. *M** and *sSFR*

red: confirmed members magenta circle: H-alpha emitter orange triangle: within 200 kpc

Passive members follow local size-mass relation

Emitters are offset: too big for their stellar mass

Morphology: R_{eff} and Sersic index n

Effective radius *R_{eff}* and Sersic index *n* vs. *M** and *sSFR*

red: confirmed members magenta circle: H-alpha emitter orange triangle: within 200 kpc

Passive members follow local size-mass relation

Emitters are offset: too big for their stellar mass

But: tend to follow the local relation if on red sequence

Morphology: CAS

CAS: Concentration, Asymmetry & clumpinesS (Conselice 03)

- --> non-parametric quantification of galaxy morphology
- red: confirmed members

magenta circle: H-alpha emitter orange triangle: within 200 kpc

C depends on M*

BCG and other central member show very high A --> recent merging?

Summary

- Measure individual SFRs through H-alpha imaging in cluster at z=1.4
- Quenching radius $R_{\rm Q}{=}200$ kpc, which coincides with the extension of the X-ray emission
- At the same stellar mass, galaxies < R_Q show lower specific SFRs
 --> overall no SF at M*>5x10¹⁰ M_O
 --> typical field sSFRs only reached at M*<10¹⁰ M_O
- SF-ing galaxies have larger R_{eff} than passive members, who follow the local size-M* relation.
 But: excess emitters on the red sequence are more compact too. H-alpha emission from AGN?
- High Asymmetry in BCG --> recent merging?