# The Environments of faint Ultra Steep Spectrum Radio Sources

Ruth Grützbauch, Elvira Leonardo, Luca Bizzochi, Marco Grossi, Cristina Fernandes

& the SERVS team









José Afonso Center for Astronomy and Astrophysics, Astronomical Observatory of Lisbon Growing-up at high redshifts: from proto-clusters to galaxy clusters • 2012 September 13, Madrid



J. Afonso • The environments of faint USS Radio sources • 2012 Sept 13



J. Afonso • The environments of faint USS Radio sources • 2012 Sept 13

Why High-z Radio Galaxies (HzRGs)?

1) Among the most luminous galaxies at any redshift

2) Associated with the most massive systems

3) Progenitors of brightest cluster ellipticals

4) Track proto-cluster environments

5) May show large amounts of dust, and sub-mm detections imply violent SF (~1000  $M_{\odot}$ /yr, Reuland+03, 04, Seymour+12)

6) May show large gas reservoirs (Ly- $\alpha$  halos)

#### All this at $z \sim 2-5...$



J. Afonso • The environments of faint USS Radio sources • 2012 Sept 13

## The ins and outs of HzRGs at µJy levels

The µJy level is not necessary to reach high z's...

> ...but necessary to be sensitive to more numerous objects;



Need to seep through a huge number of lower z sources (common at µJy levels);

### 1) Sources non-detected in the optical to very deep levels



(eg, CDFS, Afonso et al 2006)

1) Sources non-detected in the optical to very deep levels

2) Infrared Faint Radio Sources



### 1) Sources non-detected in the optical to very deep levels

### 2) Infrared Faint Radio Sources





(a z=4.88 radio galaxy, Jarvis+09)

1) Sources non-detected in the optical to very deep levels

2) Infrared Faint Radio Sources

3) Radio spectral index: Ultra Steep Spectrum sources ( $\alpha \leq -1$ ,  $S \propto v^{\alpha}$ )

Sources non-detected in the optical to very deep levels
 Infrared Faint Radio Sources

3) Radio spectral index: Ultra Steep Spectrum sources ( $\alpha \leq -1$ ,  $S \propto v^{\alpha}$ )



(De Breuck+2000)

- Extremely deep radio surveys available: 1.4 GHz (VLA) reaching 6  $\mu$ Jy rms and 610 MHz (GMRT) reaching 15  $\mu$ Jy rms; 0.6 sq deg (Ibar+09).

- Extensive multiwavelength coverage: includes IR coverage, in particular with Spitzer Extragalactic Representative Volume Survey (SERVS).

- Extensive spectroscopy coverage.

→ 58 (faint) USS sources (sub-mJy at radio freqs)
→ 48/58 reliable 3.6 µm IDs (to [3.6]~22-23 mag)
→ 14 sources with a spect-z; 34 further with a photo-z

(Afonso+11)

### **USS Redshift Distribution:**

### **USS [3.6]-band Distribution:**



### SKADS Simulated Skies simulations (Wilman+08):



### SKADS Simulated Skies simulations (Wilman+08):





Can faint USS sources still be used to trace proto-clusters?



• [3.6]-[4.5]>-0.1 mag suitable for z>1.2 (Papovich+08)

 Use [3.6]<22.5 (~m\*+2 @ z~1.2-2) and m<sub>r</sub>>22.5

• Detection of overdensities within 1' (~0.5 Mpc @ 1<z<3)

- 5 (in 20) USS's in fields with overdensities (>2σ)
 z=1.460(p), 1.677(s), 2.100(s), 2.285(p), 2.560(s)



- 5 (in 20) USS's in fields with overdensities (> $2\sigma$ )

- Very similar to MIR environments of HzRGs - 11 (in 48) in overdense environments (Galametz+12)

- Interestingly, all 5 already detected at [3.6]<21.3 (but see Dominika's talk)

### **So...**

Not only the USS criteria appears highly efficient to select high-z galaxies even at the faintest radio fluxes...

... but also the clustering properties seem similar to the traditional HzRG population.

# The Future looks Bright

# The Future looks Bright Faint

What today is an ultra deep (pencil-beam) observation will soon become full sky.



Evolutionary Map of the Universe (ASKAP); Norris+2011



Westerbork Observations of the Deep APERTIF Northern-Sky; Rottgering+11

=> FULL SKY @ 1.4GHz, 10-15" resolution, 10 µJy rms (2013++)

### Lower frequencies even sooner...





# The Environments of faint Ultra Steep Spectrum Radio Sources

Ruth Grützbauch, Elvira Leonardo, Luca Bizzochi

Feel free to contact me for research opportunities in Lisbon jafonso@oal.ul.pt, also <u>http://www.path2ska.org</u> and <u>http://caaul.oal.ul.pt</u>







Center for Astronomy and Astrophysics, Astronomical Observatory of Lisbon Growing-up at high redshifts: from proto-clusters to galaxy clusters • 2012 September 13, Madrid

José Afonso

# The Environments of faint Ultra Steep Spectrum Radio Sources

Ruth Grützbauch, Elvira Leonardo, Luca Bizzochi, Marco Grossi, Cristina Fernandes

& the SERVS team









José Afonso Center for Astronomy and Astrophysics, Astronomical Observatory of Lisbon Growing-up at high redshifts: from proto-clusters to galaxy clusters • 2012 September 13, Madrid