"Growing-up at high redshift: from proto-clusters to galaxy clusters" ESAC, Madrid, 11 September, 2012

MAHALO-Subaru project :

The accelerated growth of massive, star-bursting galaxies at z>2

Ken-ichi Tadaki University of Tokyo

Spatial distribution of star-forming galaxies in clusters

\Box H α emittes at z=0.8 (RXJ1716)

[OII] emittes at z=1.5 (XCS2215)

MAHALO Subaru project

MApping HAlpha and Lines of Oxygen with Subaru (PI: Taddy Kodama)

 \rightarrow A narrow-band survey of star-forming galaxies at 1.5<z<2.5

I. Cluster environment (extreme environment)

Target	Redshift	Reference
XCSJ2215	I.46	Hayashi+10,11
4C65.22	1.52	Koyama+
Q0835	1.53	Shimakawa+
CL0332	1.61	Hayashi+
CIG J0218	1.62	Tadaki+12
PKSII38	2.16	Koyama+12
4C23.56	2.48	Tanaka+11
USS1558	2.53	Hayashi+12

2. Field environment (unbiased sample)

GOODS-N	2.19	Tadaki+11
SXDF-CANDELS	2.19	Tadaki+
SXDF-CANDELS	2.53	Tadaki+

 $H\alpha$ line at $z\sim 2.2$

Hα emitter survey in CANDELS field

Field and area	SXDF-CANDELS ~90 arcmin ²
Instrument	Subaru/MOIRCS
Filter	NB209
z=2.2 emitter	60

Available infrared data in this field
Spitzer MIPS24um
Herschel SPIRE, PACS
ASTE/AzTEC I. Imm

Global properties of H α emitters at z=2.2

Color - magnitude diagram

2-D distribution

red Hα emitters with J-K>I
blue Hα emitters

Red emitters (J-K>I) are located in high density region Most of red emitter are detected in MIPS $24\mu m$

Why are red emitters "red"?

red passive + blue star-forming dusty starburst

The infrared emission are detected !

Global properties of H α emitters at z=2.2

Stellar mass - SFR diagram

massive (M_{star}>10¹¹M_☉), low specific SFR
 less massive (10^{10.5}M_☉<M_{star}<10¹¹M_☉), high specific SFR

WFC3 H₁₆₀ images

Red and MIPS-detected H α emitters (M_{star}>10¹¹M \odot)

irregular, but single core...

ACS V606, 1814 + WFC3 H160 images

Red and MIPS-detected H α emitters (M_{star}>10¹¹M $_{\odot}$)

entirely red

Single-component Models with GALFIT (Peng+10)

Red and MIPS-detected H α emitters (M_{star}>10¹¹M $_{\odot}$)

Red emitters are likely to be dusty starburst galaxies, but they don't show the evidence of major merger/interaction.

WFC3 H₁₆₀ images

Red and MIPS-detected H α emitters (10^{10.5}M \odot <M_{star}<10¹¹M \odot)

multiple → merger or clump ?

Merger or Clump ?

Our sample

Forster Schreiber et al. 2011

Clump Analysis

Red H α emitter consists of red clump and blue clump !

→Red color is coming from this red clump.

2-component Models with GALFIT (Peng+10)

The profiles of red clumps show a higher sersic index (n>2) !

Summary

We investigated the morphologies of red Hα emitters. I. red Hα emitters with M>10¹¹M● single core + entirely red + low sersic index → extreme case of disk star-forming galaxies 2. red Hα emitters with 10^{10.5}M●<M<10¹¹M●

pair of red and blue clump + high sersic index →intense star-formation is triggered by minor merger or clump migration

How about in protocluster environments ? MAHALO-sample will directly reveal it !