The Distant Cluster Population from the Atacama Cosmology Telescope

(see Menanteau et al. 2012, [ApJ, 748,7]; Sifon, Menanteau et al. 2012 [arXiv:1201.0991], Menanteau et al. 2010, [ApJ, 723, 1523]; Marriage et al. 2011, [Apj, 731, 61]; Sehgal et al. 2011 [ApJ.732, 44])

Felipe Menanteau (Rutgers) and the ACT Collaboration

Outline

- The SZ Cluster Selection.
- The first SZ-selected clusters sample from ACT.
- "El Gordo," the most massive cluster at z>0.6
- First Cosmological Constraints from SZ-clusters
- SZ-mass calibration from follow-up observations.
- New Results from 2009-2010 observations on celestial equator.

SZE Signature (Observable) (Sunyaev & Zel'dovich 1972)

Hot electron gas imposes a unique spectral signature

Felipe Menanteau

(Credit: Neelima Sehgal) 1.4°x 1.4°

I48 GHz ~ 2.0mm (decrement)
220 GHz ~ I.4mm (null)
270 GHz ~ I.1mm (increment)

SZE Signature (Observable) (Sunyaev & Zel'dovich 1972)

Hot electron gas imposes a unique spectral signature

Felipe Menanteau

(Credit: Neelima Sehgal) 1.4°x 1.4°

I48 GHz ~ 2.0mm (decrement)
220 GHz ~ I.4mm (null)
270 GHz ~ I.1mm (increment)

SZE Signature (Observable) Hot electron gas (Sunyaev & Zel'dovich 1972) imposes a unique spectral signature 270 GHz Pt. Sources increment

0.05 Anisotropy (MJy/sr) Synchrotron ≥ 0.00 SZ Dust -0.05200 100 300 400 Frequency (GHz) NO SZ Contribution in Central Band

Felipe Menanteau

0.10

(Credit: Neelima Sehgal) 1.4°x 1.4°

148 GHz ~ 2.0mm (decrement) 220 GHz ~ I.4mm (null) 270 GHz ~ I.Imm (increment)

New View of the CMB

The Era of SZ Surveys has arrived

Felipe Menanteau

ACT: The Atacama Cosmology Telescope

RUTGERS

- PI: Lyman Page (Princeton University)
- 5200 meters (17,000 ft)
- "High and dry": 0.49 mm median Precipitable Water Vapor (PWV).
- 6 m primary mirror. Off-axis Gregorian telescope
- ~ I arcmin resolution
- 148, 218, 277 GHz channels (~ 2.0, 1.4 and 1.1 mm)
- ACTPol (2013-2016) deep/wide survey
- a few x1000 deg² of equatorial observations

ACT Sky Coverage

ACT Sky Coverage

Detecting SZ clusters and point sources

Felipe Menanteau

Optical Cluster Identification

Table 2ACT 2008 clusters

ACT Descriptor	R.A. (J2000)	Dec. (J2000)	Redshift	SNR	Alt Name
ACT-CL J0145-5301	$01:\!45:\!03.6$	-53:01:23.4	$0.118^{\rm \ a}$	4.7(4.0)	Abell 2941
ACT-CL J0641-4949	06:41:37.8	-49:46:55.0	0.146 ^b	4.9(4.9)	Abell 3402
ACT-CL J0645-5413	06:45:29.5	-54:13:37.0	0.167 ^a	7.1(7.1)	Abell 3404
ACT-CL J0638-5358	06:38:49.4	-53:58:40.8	0.222 ^a	10.6(10.0)	Abell S0592
ACT-CL J0516-5430	05:16:37.4	-54:30:01.5	0.294 ^c	5.2(4.7)	Abell S0520/SPT-CL J0516-5430
ACT-CL J0658-5557	06:58:33.1	-55:57:07.2	$0.296^{\rm \ d}$	11.6(11.5)	1E0657-56 (Bullet)
ACT-CL J0245-5302	02:45:35.8	-53:02:16.8	0.300 e	8.3(9.1)	Abell S0295
ACT-CL J0217-5245	02:17:12.6	-52:44:49.0	0.343 f	4.5(4.1)	RXC J0217.2-5244
ACT-CL J0237-4939	02:37:01.7	-49:38:10.0	0.40 ± 0.05	4.9(3.9)	
ACT-CL J0707-5522	07:07:04.7	-55:23:08.5	0.43 ± 0.06	4.2()	
ACT-CL J0235-5121	02:35:45.3	-51:21:05.2	0.43 ± 0.07	5.7~(6.2)	
ACT-CL J0330-5227	03:30:56.8	-52:28:13.7	$0.440^{-{ m g}}$	7.4~(6.1)	Abell $3128(NE)$
ACT-CL J0509-5341	05:09:21.4	-53:42:12.3	0.461 h	4.4(4.8)	SPT-CL J0509-5342
ACT-CL J0304-4921	03:04:16.0	-49:21:26.3	0.47 ± 0.05	5.0(3.9)	
ACT-CL J0215-5212	02:15:12.3	-52:12:25.3	0.51 ± 0.05	4.8(4.9)	
ACT-CL J0438-5419	04:38:17.7	-54:19:20.7	0.54 ± 0.05	$8.8 \ (8.0)$	
ACT-CL J0346-5438	03:46:55.5	-54:38:54.8	0.55 ± 0.05	4.4(4.4)	
ACT-CL J0232-5257	02:32:46.2	-52:57:50.0	0.59 ± 0.07	5.2 (4.7)	
ACT-CL J0559-5249	05:59:43.2	-52:49:27.1	0.611^{-1}	5.1 (5.1)	SPT-CL J0559-5249
ACT-CL J0616-5227	06:16:34.2	-52:27:13.3	0.71 ± 0.10	6.3 (5.9)	
ACT-CL J0102-4915	01:02:52.5	-49:14:58.0	0.75 ± 0.04	8.8 (9.0)	
ACT-CL J0528-5259	05:28:05.3	-52:59:52.8	0.768 ^h	4.7()	SPT-CL J0528-5300
ACT-CL J0546-5345	05:46:37.7	-53:45:31.1	$1.066^{-{ m h}}$	7.2~(6.5)	SPT-CL J0546-5345

Table 2ACT 2008 clusters

ACT Descriptor	R.A. (J2000)	Dec. (J2000)	Redshift	SNR	Alt Name
ACT-CL J0145-5301	01:45:03.6	-53:01:23.4	0.118 ^a	4.7(4.0)	Abell 2941
ACT-CL J0641-4949	06:41:37.8	-49:46:55.0	$0.146^{-\mathrm{b}}$	4.9(4.9)	Abell 3402
ACT-CL J0645-5413	06:45:29.5	-54:13:37.0	$0.167^{\ a}$	7.1(7.1)	Abell 3404
ACT-CL J0638-5358	06:38:49.4	-53:58:40.8	0.222 ^a	10.6(10.0)	Abell S0592
ACT-CL J0516-5430	05:16:37.4	-54:30:01.5	0.294 ^c	5.2(4.7)	Abell S0520/SPT-CL J0516-5430
ACT-CL J0658-5557	06:58:33.1	-55:57:07.2	$0.296^{- m d}$	11.6(11.5)	1E0657-56 (Bullet)
ACT-CL J0245-5302	02:45:35.8	-53:02:16.8	0.300 ^e	8.3(9.1)	Abell S0295
ACT-CL J0217-5245	02:17:12.6	-52:44:49.0	$0.343^{\rm f}$	4.5(4.1)	RXC J0217.2-5244 (9) known
ACT-CL J0237-4939	02:37:01.7	-49:38:10.0	0.40 ± 0.05	4.9(3.9)	
ACT-CL J0707-5522	07:07:04.7	-55:23:08.5	0.43 ± 0.06	4.2()	
ACT-CL J0235-5121	02:35:45.3	-51:21:05.2	0.43 ± 0.07	5.7 (6.2)	
ACT-CL J0330-5227	03:30:56.8	-52:28:13.7	0.440 ^g	7.4(6.1)	Abell $3128(NE)$
ACT-CL J0509-5341	05:09:21.4	-53:42:12.3	0.461 h	4.4(4.8)	SPT-CL J0509-5342
ACT-CL J0304-4921	03:04:16.0	-49:21:26.3	0.47 ± 0.05	5.0(3.9)	
ACT-CL J0215-5212	02:15:12.3	-52:12:25.3	0.51 ± 0.05	4.8(4.9)	
ACT-CL J0438-5419	04:38:17.7	-54:19:20.7	0.54 ± 0.05	8.8(8.0)	
ACT-CL J0346-5438	03:46:55.5	-54:38:54.8	0.55 ± 0.05	4.4(4.4)	
ACT-CL J0232-5257	02:32:46.2	-52:57:50.0	0.59 ± 0.07	5.2(4.7)	
ACT-CL J0559-5249	05:59:43.2	-52:49:27.1	$0.611^{-{ m i}}$	5.1(5.1)	SPT-CL J0559-5249
ACT-CL J0616-5227	06:16:34.2	-52:27:13.3	0.71 ± 0.10	6.3(5.9)	
ACT-CL J0102-4915	01:02:52.5	-49:14:58.0	0.75 ± 0.04	8.8 (9.0)	
ACT-CL J0528-5259	05:28:05.3	-52:59:52.8	0.768 ^h	4.7 ()	SPT-CL J0528-5300
ACT-CL J0546-5345	05:46:37.7	-53:45:31.1	1.066^{h}	7.2(6.5)	SPT-CL J0546-5345

Table 2ACT 2008 clusters

ACT Descriptor	R.A. (J2000)	Dec. (J2000)	Redshift	SNR	Alt Name	
ACT-CL J0145-5301	01:45:03.6	-53:01:23.4	0.118 ^a	4.7(4.0)	Abell 2941	
ACT-CL J0641-4949	06:41:37.8	-49:46:55.0	$0.146^{-\mathrm{b}}$	4.9(4.9)	Abell 3402	
ACT-CL J0645-5413	06:45:29.5	-54:13:37.0	$0.167^{\rm a}$	7.1 (7.1)	Abell 3404	
ACT-CL J0638-5358	06:38:49.4	-53:58:40.8	0.222 ^a	10.6(10.0)	Abell S0592	
ACT-CL J0516-5430	05:16:37.4	-54:30:01.5	0.294 ^c	5.2(4.7)	Abell S0520/SPT-CL J0516-5430	
ACT-CL J0658-5557	06:58:33.1	-55:57:07.2	$0.296^{\rm d}$	11.6(11.5)	1E0657-56 (Bullet)	
ACT-CL J0245-5302	02:45:35.8	-53:02:16.8	0.300 ^e	8.3(9.1)	Abell S0295	
ACT-CL J0217-5245	02:17:12.6	-52:44:49.0	$0.343^{\rm f}$	4.5(4.1)	RXC J0217.2-5244 (9)	n
ACT-CL J0237-4939	02:37:01.7	-49:38:10.0	0.40 ± 0.05	4.9(3.9)		11
ACT-CL J0707-5522	07:07:04.7	-55:23:08.5	0.43 ± 0.06	4.2()		
ACT-CL J0235-5121	02:35:45.3	-51:21:05.2	0.43 ± 0.07	5.7(6.2)		
ACT-CL J0330-5227	03:30:56.8	-52:28:13.7	0.440 ^g	7.4(6.1)	Abell 3128(NE)	
ACT-CL J0509-5341	05:09:21.4	-53:42:12.3	0.461 h	4.4 (4.8)	SPT-CL J0509-5342	
ACT-CL J0304-4921	03:04:16.0	-49:21:26.3	0.47 ± 0.05	5.0(3.9)	/ (10) new	
ACT-CL J0215-5212	02:15:12.3	-52:12:25.3	0.51 ± 0.05	4.8(4.9)		
ACT-CL J0438-5419	04:38:17.7	-54:19:20.7	0.54 ± 0.05	8.8 (8.0)		
ACT-CL J0346-5438	03:46:55.5	-54:38:54.8	0.55 ± 0.05	4.4(4.4)		
ACT-CL J0232-5257	02:32:46.2	-52:57:50.0	0.59 ± 0.07	5.2(4.7)		
ACT-CL J0559-5249	05:59:43.2	-52:49:27.1	0.611 ⁱ	5.1 (5.1)	SPT-CL J0559-5249	
ACT-CL J0616-5227	06:16:34.2	-52:27:13.3	0.71 ± 0.10	6.3(5.9)		
ACT-CL J0102-4915	01:02:52.5	-49:14:58.0	0.75 ± 0.04	8.8 (9.0)		
ACT-CL J0528-5259	05:28:05.3	-52:59:52.8	$0.768^{\rm h}$	4.7 ()	SPT-CL J0528-5300	
ACT-CL J0546-5345	05:46:37.7	-53:45:31.1	1.066 ^h	7.2(6.5)	SPT-CL J0546-5345	

Table 2ACT 2008 clusters

ACT Descriptor	R.A. (J2000)	Dec. (J2000)	Redshift	SNR	Alt Name	
ACT-CL J0145-5301	01:45:03.6	-53:01:23.4	0.118 ^a	4.7(4.0)	Abell 2941	
ACT-CL J0641-4949	06:41:37.8	-49:46:55.0	$0.146^{-{ m b}}$	4.9(4.9)	Abell 3402	
ACT-CL J0645-5413	06:45:29.5	-54:13:37.0	$0.167^{\ a}$	7.1(7.1)	Abell 3404	
ACT-CL J0638-5358	06:38:49.4	-53:58:40.8	0.222 ^a	10.6(10.0)	Abell S0592	
ACT-CL J0516-5430	05:16:37.4	-54:30:01.5	0.294 ^c	5.2(4.7)	Abell S0520/SPT-CL J	10516-5430
ACT-CL J0658-5557	06:58:33.1	-55:57:07.2	$0.296^{\rm \ d}$	11.6(11.5)	1E0657-56 (Bullet)	
ACT-CL J0245-5302	02:45:35.8	-53:02:16.8	0.300 ^e	8.3(9.1)	Abell S0295	
ACT-CL J0217-5245	02:17:12.6	-52:44:49.0	$0.343^{\rm f}$	4.5(4.1)	RXC J0217.2-5244	(9) known
ACT-CL J0237-4939	02:37:01.7	-49:38:10.0	0.40 ± 0.05	4.9(3.9)		
ACT-CL J0707-5522	07:07:04.7	-55:23:08.5	0.43 ± 0.06	4.2()		
ACT-CL J0235-5121	02:35:45.3	-51:21:05.2	0.43 ± 0.07	5.7(6.2)		
ACT-CL J0330-5227	03:30:56.8	-52:28:13.7	0.440 g	7.4 (6.1)	Abell $3128(NE)$	
ACT-CL J0509-5341	05:09:21.4	-53:42:12.3	$0.461^{-{ m h}}$	4.4(4.8)	SPT-CL J0509-5342	
ACT-CL J0304-4921	03:04:16.0	-49:21:26.3	0.47 ± 0.05	5.0(3.9)		(14) SZ
ACT-CL J0215-5212	02:15:12.3	-52:12:25.3	0.51 ± 0.05	4.8(4.9)		(
ACT-CL J0438-5419	04:38:17.7	-54:19:20.7	0.54 ± 0.05	8.8(8.0)	h l	iscovered
ACT-CL J0346-5438	03:46:55.5	-54:38:54.8	0.55 ± 0.05	4.4(4.4)		
ACT-CL J0232-5257	02:32:46.2	-52:57:50.0	0.59 ± 0.07	5.2(4.7)		
ACT-CL J0559-5249	05:59:43.2	-52:49:27.1	0.611^{-1}	5.1(5.1)	SPT-CL J0559-5249	
ACT-CL J0616-5227	06:16:34.2	-52:27:13.3	0.71 ± 0.10	6.3(5.9)		
ACT-CL J0102-4915	01:02:52.5	-49:14:58.0	0.75 ± 0.04	8.8(9.0)	-	
ACT-CL J0528-5259	05:28:05.3	-52:59:52.8	0.768 h	4.7()	SPT-CL J0528-5300	
ACT-CL J0546-5345	05:46:37.7	-53:45:31.1	$1.066^{\rm h}$	7.2(6.5)	SPT-CL J0546-5345	

Some Previously Known Clusters

Some Previously Known Clusters

Some 2008 ACT SZ-discovered Clusters

Some 2008 ACT SZ-discovered Clusters

Some 2008 ACT SZ-discovered Clusters

ACT-CL J0509-5341, z=0.460

Strong Lensing (examples)

7/23 clusters show strong lensing arcs
3 of these have already reported

Menanteau et al. (2010), ApJ, 723, 1523 Growing up at High-z, Sep 12, 2012

12

Strong Lensing (examples)

- 7/23 clusters show strong lensing arcs
- 3 of these have already reported

Menanteau et al. (2010), ApJ, 723, 1523

"El Gordo," Multi-wavelength Observations


```
Menanteau et al. (2012)
```

- Detected in 2008 ACT maps of Southern Strip (Menanteau et al. 2010, Marriage et al. 2011)
 - Strongest SZ decrement over 755 deg² (South + Equator)
- Optical follow-up: 89 redshifts!
 - Imaged (griz) at SOAR/SOI (9-12 Dec 2009)
 - VLT/FORS2 MOS (10-hrs) + Imaging (2 hrs) in Jan 2011

- Chandra X-ray Observations
 - $\circ~$ ACIS-I, 60 ks, observed 27 Jan 201 I
- Spitzer IRAC warm-phase follow-up
 - $\circ~$ Imaged at 3.6 μm and 4.5 μm

Clowe et al.(2006)

Felipe Menanteau

Clowe et al.(2006)

Felipe Menanteau

Clowe et al.(2006) Growing up at High-z, Sep 12, 2012

Clowe et al.(2006) Growing up at High-z, Sep 12, 2012

Clowe et al.(2006) Growing up at High-z, Sep 12, 2012

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau

The galaxies in "El Gordo" mostly lie in two distinct groups

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau

The galaxies in "El Gordo" mostly lie in two distinct groups

The X-ray emission mostly lies between these two groups and shows a peculiar structure with a bright offset Gas Peak and Wake.

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau

The galaxies in "El Gordo" mostly lie in two distinct groups

The X-ray emission mostly lies between these two groups and shows a peculiar structure with a bright offset Gas Peak and Wake.

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau

The galaxies in "El Gordo" mostly lie in two distinct groups

The X-ray emission mostly lies between these two groups and shows a peculiar structure with a bright offset Gas Peak and Wake.

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau

The galaxies in "El Gordo" mostly lie in two distinct groups

The X-ray emission mostly lies between these two groups and shows a peculiar structure with a bright offset Gas Peak and Wake.

The offset peak is likely the core of one of the merging components; arrow indicates the approximate direction of merger.

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau
A high-z Bullet-like Cluster?

The galaxies in "El Gordo" mostly lie in two distinct groups

The X-ray emission mostly lies between these two groups and shows a peculiar structure with a bright offset Gas Peak and Wake.

The offset peak is likely the core of one of the merging components; arrow indicates the approximate direction of merger.

The peak of the Galaxy distribution precedes the Gas Peak in the direction of the merger – a spatial separation like that seen in the Bullet Cluster.

Menanteau et al. (2012, ApJ, 748, 7)

Growing up at High-z, Sep 12, 2012

A high-z Bullet-like Cluster?

The galaxies in "El Gordo" mostly lie in two distinct groups

The X-ray emission mostly lies between these two groups and shows a peculiar structure with a bright offset Gas Peak and Wake.

The offset peak is likely the core of one of the merging components; arrow indicates the approximate direction of merger.

The peak of the Galaxy distribution precedes the Gas Peak in the direction of the merger – a spatial separation like that seen in the Bullet Cluster.

Menanteau et al. (2012, ApJ, 748, 7)

Growing up at High-z, Sep 12, 2012

A high-z Bullet-like Cluster?

The galaxies in "El Gordo" mostly lie in two distinct Frips Highlights on "El Gordo"^(z=0.87)

The X-ray emission mostly lies

- Optically confirmed in the 2009B (Menanteau et al. 2010)
- The **highest** SZ signal from ACT (~755 deg², Marriage et al. 2011)
- The **hottest** cluster at z>0.6
- The most massive and X-ray Luminous cluster at z>0.6
- 89 redshifts from VLT (dynamical mass, σ_{gal} -M)
- Chandra/ACIS observations (X-ray mass, Lx-M, Tx-M, Yx-M)
- Spitzer/IRAC 3.6um and 4.5um (Stellar mass)
- Clear "wake" in the X-ray surface density.
- Separation between hot gas and galaxies of ~22 arcsec (~173 kpc) that seen in the Bullet Cluster.
 Menanteau et al. (2012, ApJ, 748,7)

"El Gordo" is Hot and Luminous!!

Felipe Menanteau

• VLT FORS2 (10hrs), redshifts for 89 members:

 $\begin{aligned} z &= 0.8701 \pm 0.0001 \\ \sigma_{\rm gal} &= 1321 \pm 106 \ {\rm km \ s^{-1}} \\ M_{\rm 200,dyn} &= 1.86^{+0.54}_{-0.49} \times 10^{15} \ h_{70}^{-1} \ M_{\odot} \end{aligned}$

Evrard et al. (2008)

• VLT FORS2 (10hrs), redshifts for 89 members:

$$\begin{split} z &= 0.8701 \pm 0.0001 \\ \sigma_{\rm gal} &= 1321 \pm 106 \ {\rm km \ s^{-1}} \\ M_{\rm 200,dyn} &= 1.86^{+0.54}_{-0.49} \times 10^{15} \ h_{70}^{-1} \ M_{\odot} \end{split}$$

Evrard et al. (2008)

• Chandra/ACIS (60 ks exposure):

 $T_X = 14.5 \pm 1.0 \text{ keV}; f_{\text{gas}} = 0.133 \text{ Kravtsov,Vikhlinin \& Nagai (2006)} \\ M_{200,Y_X} = 2.88^{+0.78}_{-0.55} \times 10^{15} h_{70}^{-1} M_{\odot} \text{ Vikhlinin et al. (2009)}$

• VLT FORS2 (10hrs), redshifts for 89 members:

$$\begin{split} z &= 0.8701 \pm 0.0001 \\ \sigma_{\rm gal} &= 1321 \pm 106 \ {\rm km \ s^{-1}} \\ M_{\rm 200,dyn} &= 1.86^{+0.54}_{-0.49} \times 10^{15} \ h_{70}^{-1} \ M_{\odot} \end{split}$$

Evrard et al. (2008)

• Chandra/ACIS (60 ks exposure):

 $T_X = 14.5 \pm 1.0 \text{ keV}; f_{\text{gas}} = 0.133 \text{ Kravtsov,Vikhlinin \& Nagai (2006)} \\ M_{200,Y_X} = 2.88^{+0.78}_{-0.55} \times 10^{15} h_{70}^{-1} M_{\odot} \text{ Vikhlinin et al. (2009)}$

• ACT/SZ decrement, yT_{CMB} - Mass

 $yT_{\rm CMB} = 490 \pm 60 \mu K$ $M_{200,\rm SZ} = 1.64^{+0.62}_{-0.42} \times 10^{15} h_{70}^{-1} M_{\odot}$

Sehgal et al. (2011)

• VLT FORS2 (10hrs), redshifts for 89 members:

$$\begin{split} z &= 0.8701 \pm 0.0001 \\ \sigma_{\rm gal} &= 1321 \pm 106 \ {\rm km \ s^{-1}} \\ M_{\rm 200,dyn} &= 1.86^{+0.54}_{-0.49} \times 10^{15} \ h_{70}^{-1} \ M_{\odot} \end{split}$$

Evrard et al. (2008)

• Chandra/ACIS (60 ks exposure):

 $T_X = 14.5 \pm 1.0 \text{ keV}; f_{\text{gas}} = 0.133 \text{ Kravtsov,Vikhlinin \& Nagai (2006)} \\ M_{200,Y_X} = 2.88^{+0.78}_{-0.55} \times 10^{15} h_{70}^{-1} M_{\odot} \text{ Vikhlinin et al. (2009)}$

ACT/SZ decrement, yT_{CMB} - Mass

 $yT_{\rm CMB} = 490 \pm 60 \mu K$

Sehgal et al. (2011)

• Combined (χ^2 combined) optical+X-ray+SZ:

 $M_{200,SZ} = 1.64^{+0.62}_{-0.42} \times 10^{15} h_{70}^{-1} M_{\odot}$

$$M_{200} = (2.16 \pm 0.32) \times 10^{15} h_{70}^{-1} M_{\odot}$$

• VLT FORS2 (10hrs), redshifts for 89 members:

$$\begin{split} z &= 0.8701 \pm 0.0001 \\ \sigma_{\rm gal} &= 1321 \pm 106 \ {\rm km \ s^{-1}} \\ M_{\rm 200,dyn} &= 1.86^{+0.54}_{-0.49} \times 10^{15} \ h_{70}^{-1} \ M_{\odot} \end{split}$$

Evrard et al. (2008)

• Chandra/ACIS (60 ks exposure):

 $T_X = 14.5 \pm 1.0 \text{ keV}; f_{\text{gas}} = 0.133 \text{ Kravtsov,Vikhlinin & Nagai (2006)} \\ M_{200,Y_X} = 2.88^{+0.78}_{-0.55} \times 10^{15} h_{70}^{-1} M_{\odot} \text{ Vikhlinin et al. (2009)}$

- ACT/SZ decrement, yT_{CMB} Mass $yT_{CMB} = 490 \pm 60 \mu K$ $M_{200,SZ} = 1.64^{+0.62}_{-0.42} \times 10^{15} h_{70}^{-1} M_{\odot}$ CL J1226+3332 (z=0.89) $M_{200} = (1.38 \pm 0.20) \times 10^{15} h_{70}^{-1} M_{\odot}$ SPT-CL J2106-5844 (z=1.14) $M_{200} = (1.27 \pm 0.21) \times 10^{15} h_{70}^{-1} M_{\odot}$
- Combined (χ^2 combined) optical+X-ray+SZ:

$$M_{200} = (2.16 \pm 0.32) \times 10^{15} h_{70}^{-1} M_{\odot}$$

Menanteau et al. (2012, ApJ, 748,7) Growing up at High-z, Sep 12, 2012

Rarity of "El Gordo" (Based on its exceptional mass)

• Cluster is very unlikely in the ACT survey area alone (3σ), but still allowed in the ACT+SPT sky region if its mass is $I-\sigma$ or more below the nominal mass.

Felipe Menanteau

Growing up at High-z, Sep 12, 2012

All Sky

Falsify ΛCDM

ACT-CL J0102-4915

("El Gordo")

1.0

1.2

0.8

Menanteau et al. (2012, ApJ, 748, 7)

Menanteau et al. (2012, ApJ, 748, 7)

Wake! Cometary shape (even 2 tails!) 20-40% surface brightness suppression ≈35"x60"

Menanteau et al. (2012, ApJ, 748, 7)

Wake! Cometary shape (even 2 tails!) 20-40% surface brightness suppression ≈35"x60"

Low entropy, bright, offset peak

Felipe Menanteau

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau

Divide cluster in six regions based on surface brightness

Region I : 1000 cts Region 4 : 4300 cts Others : 2000 – 3600 cts

Felipe Menanteau

Felipe Menanteau

Menanteau et al. (2012, ApJ, 748, 7)

Menanteau et al. (2012, ApJ, 748, 7)

Menanteau et al. (2012, ApJ, 748, 7)

Felipe Menanteau

Menanteau et al. (2012, ApJ, 748, 7)

Color-magnitude for "El Gordo"

Color-magnitude for "El Gordo"

The Highest Redshift Radio Relic

Evidence of Giant Radio Relic from archival SUMSS 843 MHz

Potentially the most powerful radio halo known

New ATCA 2.1 GHz observations (Dec 2011) shows clear extended structure.

Double Radio Relic, associated location of shock fronts.

The Highest Redshift Radio Relic

Evidence of Giant Radio Relic from archival SUMSS 843 MHz

Potentially the most powerful radio halo known

New ATCA 2.1 GHz observations (Dec 2011) shows clear extended structure.

Double Radio Relic, associated location of shock fronts.

The Highest Redshift Radio Relic

Evidence of Giant Radio Relic from archival SUMSS 843 MHz

Potentially the most powerful radio halo known

New ATCA 2.1 GHz observations (Dec 2011) shows clear extended structure.

Double Radio Relic, associated location of shock fronts.

Next Steps for "El Gordo"

Approved Programs:

- F625W(r), F775W(i) and F850LP(z) HST/ACS observations will be used to create WL maps. (yesterday)
- Deeper 300 ks Chandra/ACIS X-ray observation (Feb 2012) to study hot gas of merger shock and temperature map of El Gordo (in progress)
- ATCA and GMRT radio observation to search for Radio Halo emission. (2012B)

Towards a better y-Mass calibration

- Ongoing: Dynamic Masses and Scaling Relations of ACT SZE-selected Galaxy Clusters. (see Sifon, Menanteau et al. 2012, arXiv:1201.0991S)
- Lesson: Strength not coming from numbers (yet!)

Cosmology Constraints Fixing the SZ Signal Mass Relation

Cosmology Constraints Marginalizing over the SZ Signal Mass Relation

Felipe Menanteau

Cosmology Constraints Marginalizing over the SZ Signal Mass Relation

Felipe Menanteau

Improving Cluster Scaling Relations (using optical data)

Table 3Dynamical Properties of ACT 2008 Clusters

ACT Descriptor	$N_{\rm gal}{}^{\rm a}$	$z_{\rm BI}$	S _{BI}	r_{200c}	M_{200c}
			$(\mathrm{kms^{-1}})$	$(h_{70}^{-1} \text{ kpc})$	$(10^{14} h_{70}^{-1} M_{\odot})$
ACT-CL J0102–4915 ^b	89	0.87008 ± 0.00010	1321 ± 106	1789 ± 140	16.3 ± 3.8
ACT-CL J0215-5212	55	0.48009 ± 0.00012	1025 ± 102	1736 ± 173	9.6 ± 2.8
ACT-CL J0232-5257	64	0.55595 ± 0.00009	884 ± 110	1438 ± 177	5.9 ± 2.2
ACT-CL J0235-5121	82	0.27768 ± 0.00006	1063 ± 101	2007 ± 190	11.9 ± 3.4
ACT-CL J0237-4939	65	0.33438 ± 0.00009	1280 ± 89	2339 ± 162	20.0 ± 4.2
ACT-CL J0304-4921	71	0.39219 ± 0.00008	1109 ± 89	1971 ± 155	12.7 ± 3.0
ACT-CL J0330–5227 ^c	71	0.44173 ± 0.00009	1238 ± 98	2138 ± 166	17.1 ± 4.0
ACT-CL J0346–5438	88	0.52973 ± 0.00007	1075 ± 74	1770 ± 122	10.7 ± 2.2
ACT-CL J0438-5419 ^d	65	0.42141 ± 0.00011	1324 ± 105	2310 ± 182	21.1 ± 5.0
ACT-CL J0509–5341 ^e	76	0.46072 ± 0.00006	846 ± 111	1451 ± 189	5.5 ± 2.1
ACT-CL J0521–5104 ^f	24	0.67549 ± 0.00032	1150 ± 163	1744 ± 245	12.1 ± 5.1
ACT-CL J0528–5259 ^g	55	0.76780 ± 0.00010	928 ± 111	1337 ± 159	6.1 ± 2.2
ACT-CL J0546–5345 ^h	48	1.06628 ± 0.00020	1082 ± 187	1319 ± 226	8.1 ± 4.2
ACT-CL J0559–5249 ⁱ	31	0.60910 ± 0.00026	1219 ± 118	1916 ± 184	14.9 ± 4.3
ACT-CL J0616-5227	18	0.68380 ± 0.00044	1124 ± 165	1699 ± 244	11.2 ± 4.9
ACT-CL J0707-5522	58	0.29625 ± 0.00006	832 ± 82	1561 ± 156	5.7 ± 1.7

Gemini-S/GMOS

(Sifón, Menanteau et al. 2012, arXiv:1201.0991)

VLT/FORS2

Ongoing Gemini-S/GMOS, 2010B, 2011B, 2012A, 2012B

g Relations

Gemini-S/GMOS Dec, 2010

VLT/FORS2 Jan 2011

ACT Equatorial Observations 2009-2010 seasons [Menanteau et al. 2012, arXiv soon]

- Total area covered by ACT maps 502 deg² over the celestial equator
- Ovelap with SDSS/S82 270.25 deg²
- Beyond S82, about extra ~190 deg²
- 49 optical/NIR-confirmed on S82 alone. (2x density to Southern Strip)
- 19 clusters at z<0.5 confirmed using DR8.
- SOAR 4.1-m (2012B) for optical confirmation beyond DR8.
- 68+23 so far combined (Equator + South)

Felipe Menanteau

Purity of ACT Equatorial Sample (S82)

- Purity = $N_{real}/N_{observed}$
- 100% purity for S/N>5.0 (17/18 clusters)
- 60% purity at S/N>4.5

Felipe Menanteau

[Menanteau et al. 2012, arXiv soon]

M_{200a} Masses for Equatorial Sample and rarity of the clusters

Felipe Menanteau

M_{200a} Masses for Equatorial Sample and rarity of the clusters

Felipe Menanteau

Evidence of "mis-centering"?

Offset Between BCG and SZ?

- Mean separation 0.12 Mpc/h₇₀ and 0.17 Mpc/h₇₀

- ACT SZ centroid uncertainty ~ 0.15 Mpc/h₇₀

- No significant evidence of offset between SZ/BCG

SZ/Richness Relation on the ACT Equatorial sample

- Compare SZ-Mass with optical richness (N₂₀₀), own values.
- Clusters to z<0.65 (in S82)
- Clusters to z<0.40 (out S82)
- Weak correlation with N₂₀₀
- Large scatter in M_{200a} vs N₂₀₀

Summary

- ~90 confirmed clusters (BCG and red sequence) from >952 deg², between 0.1 < z < 1.3
- We have one of the first redshift-independent samples of galaxy clusters selected via the SZ effect, used to constrain σ_8 and w.
- We have the next bullet cluster at z~0.9
- ATCA observations confirms hightest-z **Double Radio Relic**.
- Scaling relations from 2010-2012: Gemini/GMOS + VLT/FORS
- 100 warm Spitzer/IRAC (3.6um and 4.5um) stellar content.
- HST(6 orbits)+Chandra (300ks) for "El Gordo" confirm DM/gas offset.
- Chandra and XMM observations of new systems

• ACTPol to start observation in 2013.

Thank you

Felipe Menanteau