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ABSTRACT

Star formation rate and accumulated stellar mass are two fundamental physical quantities
that describe the evolutionary state of a forming galaxy. Two recent attempts to determine
the relationship between these quantities, by interpreting a sample of star-forming galaxies
at redshift of z ~ 4, have led to opposite conclusions. Using a model galaxy population, we
investigate possible causes for this discrepancy and conclude that minor errors in the conversion
from observables to physical quantities can lead to a major misrepresentation when applied
without awareness of sample selection. We also investigate, in a general way, the physical
origin of the correlation between star formation rate and stellar mass within the hierarchical

galaxy formation theory.
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1 INTRODUCTION

As more distant galaxy populations become accessible to modern
surveys, astronomers are striving to estimate their physical proper-
ties, despite the challenges inherent in such pioneering tasks. Even
light that barely registers on our instruments is analysed to infer
the stellar mass and star formation activity of its source, providing
valuable stepping stones on which our physical picture of structure
formation can progress.

For example, Stark et al. (2009) produced estimates of stellar
mass for 1038 galaxies from the GOODS survey, grouped into three
populations by redshift: z &~ 4, 5 and 6. These stellar masses were
estimated using a population synthesis model (Bruzual & Charlot
2003; Bruzual 2007) which searches for the stellar population which
best fits the observed spectral energy distribution of each galaxy (see
Section 3.4).

Star formation rates were specifically not derived for this sample,
because of uncertainties in the extinction correction. In lieu of this,
the galaxies® ‘emerging’ UV luminosities were computed (the lu-
minosity at 1550 A without any dust correction). However, fig. 9 of
Stark et al. (2009) does include the star formation rates that would
be inferred if a standard proportionality between UV luminosity
and star formation rate is assumed (Madau, Pozzetti & Dickinson
1998):

M, Myso + 18.45
log M — ) =- . (¢5)
oyr 2.5

The resulting figure, for the galaxies in the nearest of those three
samples, is reproduced for reference in the upper panel of our Fig. 1.
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Despite only a fleeting appearance in the observational paper,
these star formation rate estimates have since been the subject of a
quite detailed theoretical analysis. Dutton et al. (2010) summarize
the trend given by the sample in Fig. 1 as

L 6)
M.  0.62Gyr \10°Mg /)

which implies that the specific star formation rate (M, /M,) is only
weakly dependent on the stellar mass.

Meanwhile, the same sample of observational estimates has been
subject to analysis by Khochfar & Silk (2011). Having chosen to
plot the information on different axes, with a derived quantity, the
specific star formation rate (SSFR), on the y-axis (as in the lower
panel of Fig. 1) these authors perceive there to be a ‘strong observed
mass-dependence’ with stellar mass.

So the same sample has been interpreted, on the one hand, as
having a strong correlation with stellar mass and, on the other
hand, a weak correlation.! What is the reader to conclude from this
literature?

The confusion can be appreciated by comparing the two panels
in Fig. 1. The trend (2) does not seem unreasonable when looking
at the top panel, but the problem is that the observational limit in

! Both groups of authors agree on the relative evolution in specific star for-
mation rate implied by the data when compared with equivalent relationships
at low redshifts, and that this evolution seems to cease (appear constant) for
z 2 4. Dutton etal. (2010) explain this in terms of high gas densities, and thus
higher star formation rates, for a galaxy of a given mass at higher redshift.
Khochfar & Silk (2011) look for modulated models of accretion-driven star
formation. In this paper, we focus on the extent to which the data may or
may not reveal the true underlying evolution (Section 4).
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ABSTRACT

We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z ~ 4
and z >~ 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify
2443 B, 506 V, and 137 i’-band dropout galaxies likely to be at z ~ 4, 5, and 6. For the subset of dropouts
for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-
weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes
in galaxies at z 2 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find
that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly
between z >~ 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs,
we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When
considered along with the short duty cycles inferred from clustering measurements, these results may suggest
that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to
the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number
density of massive galaxies increases considerably with time over 4 < z < 6. Given this rapid increase of UV
luminous massive galaxies, we explore the possibility that a significant fraction of massive (10" M) 7z ~ 2-3
distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in
the stellar mass function of actively forming LBGs over 4 < z < 6 down to z =~ 2, we find that z > 3 LBGs
could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming
systems probed by submillimeter observations are not the only route toward the assembly of DRGs at z =~ 2.

Key words: galaxies: evolution — galaxies: formation — galaxies: high-redshift — galaxies: starburst — surveys —
ultraviolet: galaxies
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Understanding the inter-relationship between these various

1. INTRODUCTION ; b F
sources is an important goal and intense efforts are now

The detailed study of various classes of distant galaxies has
enabled great progress in understanding the star formation and
mass assembly history of normal field galaxies (for recent
reviews, see Hopkins & Beacom 2006; Ellis 2008; Wilkins
et al. 2008). Multiwavelength probes have been particularly
effective in revealing the coexistence of diverse categories of
galaxies with redshifts z >~ 2-3. These include the relatively
unobscured star-forming “Lyman break” galaxies (LBGs, e.g.,
Steidel et al. 1996; Shapley et al. 2005), the infrared-selected
massive “distant red” galaxies (DRGs; e.g., Franx et al. 2003;
van Dokkum et al. 2006) and heavily obscured submillimeter
galaxies which contain both intensely star-forming and active
components (SMGs; e.g., Smail et al. 1998; Chapman et al.
2005). The collective study of these populations has revealed
that the redshift range 1 < z < 3 is a formative one when the
bulk of the stars in present-day massive galaxies was produced
(Hopkins & Beacom 2006).

8 Hubble Fellow.

underway to address this issue (e.g., van Dokkum et al. 2006;
Reddy et al. 2008). A relevant aspect of this discussion concerns
the assembly history of objects observed during the redshift
interval 4 < z < 6, corresponding to a period only 1 Gyr earlier.
Such data may provide valuable insight into the connection
between actively star-forming and passive populations as well
as define the mode of star formation in typical massive galaxies.

Over the last five years, deep multiwavelength surveys have
resulted in the discovery of large samples of LBGs at z =~ 4-6
(Bouwens et al. 2007). Despite early controversies (Bunker et al.
2004; Stanway et al. 2003; Giavalisco et al. 2004a; Beckwith
et al. 2006), it now seems clear that the star formation density
declines with redshift beyond z ~ 3. Recent evidence also
suggests the characteristic luminosity is also fading (Yoshida
et al. 2006; Bouwens et al. 2007; McLure et al. 2009). Bouwens
et al. (2007) attribute this evolutionary pattern to the simple
hierarchical assembly of galaxies. Unfortunately, because of the
transient nature of star formation probed by the rest-frame UV
luminosity function (LF), these studies alone provide only an
approximate measure of the evolutionary processes occurring

Martin Stringer I'.@

vatoire

de Paris




THE ASTROPHYSICAL JOURNAL, 697:1493-1511, 2009 June 1
©2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE EVOLUTIONARY HISTORY OF LYMAN BR
OBSERVING SUCCESSIVE GENERATION:

DaNIEL P. STARK! 2, RICHARD S. ELLIS'3, ANDREW BUNKH
AND MA
! Department of Astrophysics, California Institute of Technolog;
2 Institute of Astronomy, University of Cambrid
3 Department of Astrophysics, U
# Department of Astronomy, University|
5 Department of Astronomy & Astrophysics, University of
© Department of Physics and Astronomy, University of British C
7 Spitzer Science Center, California Institute of Technology,
Received 2008 October 13; accepted

ABST]

‘We present new measurements of the evolution in the
and z >~ 6. By utilizing the extensive multiwavelengt]
2443 B, 506 V, and 137 i’-band dropout galaxies likel
for which reliable Spitzer IRAC photometry is feasibld
weighted ages and stellar masses. With the goal of und.
in galaxies at z 2 4, we examine the distribution of stel
that at a fixed rest-UV luminosity, the average stellar

between z 2~ 6 and 4. In order to maintain this near eq
we argue that there must be a steady flux of young, nd
considered along with the short duty cycles inferred fi
that galaxies are undergoing star formation episodes 1
the unchanging relationship between the average stella
density of massive galaxies increases considerably wit
luminous massive galaxies, we explore the possibility
distant red galaxies (DRGs) were in part assembled in
the stellar mass function of actively forming LBGs ovd
could have contributed significantly to the quiescent I}
systems probed by submillimeter observations are not

Key words: galaxies: evolution — galaxies: formation —
ultraviolet: galaxies

Online-only material: color figures

1. INTRODUCTION

The detailed study of various classes of distant galaxies has
enabled great progress in understanding the star formation and
mass assembly history of normal field galaxies (for recent
reviews, see Hopkins & Beacom 2006; Ellis 2008; Wilkins
et al. 2008). Multiwavelength probes have been particularly
effective in revealing the coexistence of diverse categories of
galaxies with redshifts z >~ 2-3. These include the relatively
unobscured star-forming “Lyman break” galaxies (LBGs, e.g.,
Steidel et al. 1996; Shapley et al. 2005), the infrared-selected
massive “distant red” galaxies (DRGs; e.g., Franx et al. 2003;
van Dokkum et al. 2006) and heavily obscured submillimeter
galaxies which contain both intensely star-forming and active
components (SMGs; e.g., Smail et al. 1998; Chapman et al.
2005). The collective study of these populations has revealed
that the redshift range 1 < z < 3 is a formative one when the
bulk of the stars in present-day massive galaxies was produced
(Hopkins & Beacom 2006).

8 Hubble Fellow.

1504 STARK ET AL.

Log g SFR yeor (Mo yr™)

1.5 1.0 0.5 0.0
10 T T T

10"

1000

M (M)

Vol. 697

Table 2
Evolution of Galaxy Properties over 4 <z <6
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Figure 9. Stellar mass vs. absolute magnitude at 1500 A (uncorrected for dust
extinction) over z =~ 4-6. Small red circles correspond to inferred stellar masses
and rest-UV absolute magnitudes for individual B drops (top), V drops (middle)
and i’ drops (bottom) assuming a T = 100 Myr exponential decay model.
The dark solid circles are the median stellar mass in each magnitude bin. The
relationship at z =~ 4 is overlaid on the z >~ 5 and z > 6 panels as a black solid
dashed line. The vertical solid lines the adopted )l limits
for each sample. The median stellar mass increases monotonically with M;sgy
in each dropout sample; however, at a fixed M50, the median stellar mass does
not decrease significantly with increasing redshift, as may be expected in simple
steady growth models.

(A color version of this figure is available in the online journal.)

i’ drops (z >~ 6)

—22.5 0
=215 8
—20.5 41
—19.5

160 (24-530) 226 286
13 (1.3-90) 27 102

Notes. The stellar masses and ages are inferred from models using a Salpeter
IMF and solar metallicity. In Column 3, we present the median stellar masses
(and the range of masses spanned by the middle 80% of the distribution)
determined from an exponentially declining star formation history with 7 =
100 Myr. In Column 4, we provide the median stellar masses inferred assuming
a constant star formation history. In Column 5, we present the median ages
inferred for the ¢ = 100 Myr models.

shown in Table 2, the absence of a systematic increase in the
average stellar masses is not strongly dependent on the chosen
star formation history. Overall these results seem to imply that
the ratio of median stellar mass to emerging UV luminosity does
not evolve significantly for LBGs over z = 4-6. A galaxy with a
given M 500 at z =~ 6 will, on average, have the same assembled
mass (to within a factor of >~ 2) as a galaxy seen at z >~ 4 with
the same Msy. This suggests that the specific SFR evolves
weakly over 4 < z < 6, indicating that the typical duration of
past star formation for a galaxy of a given luminosity does not
vary significantly between z 2~ 6 and 4.

While the inclusion of a dust correction would shift the
M,—M 5y relation brightward (i.e., to the left in Figure 9), it
would likely not lead to an increase in the normalization of the
M,—M, 500 relation over time. As has been shown elsewhere
(e.g., Stanway et al. 2005; Bouwens et al. 2007) galaxies
at Ms00 < —19.8 do potentially become marginally dustier
between z >~ 6 and 4 which would cause the z >~ 4 M,—M s
relation to shift slightly more than the z >~ 5 and 6 relations.
Suce ate ctive shift briguwarc is 10ughly the surie as a shit
toward lower stellar masses at fixed M5, this would actually
have the effect of slightly decreasing the normalization of the
M,—M 509 relation over the 4 < z < 6 redshift range.

6.1. Testing the Steady Growth Scenario

We now attempt to place the M,—M s relation presented in
Figure 9 in the context of the steady growth scenario discussed
at the outset of this section. To approximate this scenario,
we assume that galaxies follow a constant SFR. Using solar
metallicity templates and allowing the dust content to freely
vary, we find that the typical implied star formation lifetimes
of the B drops are in excess of 700 Myr in the two brightest
bins (Figure 10), implying that the precursors of the majority
of B drops would have been equally luminous in V- and
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steady growth models.

(A color version of this figure is available in the online journal.)
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mass (to within a factor of >~ 2) as a galaxy seen at z >~ 4 with
the same Msy. This suggests that the specific SFR evolves
weakly over 4 < z < 6, indicating that the typical duration of
past star formation for a galaxy of a given luminosity does not
vary significantly between z 2~ 6 and 4.

While the inclusion of a dust correction would shift the
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at the outset of this section. To approximate this scenario,
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1. INTRODUCTION

The detailed study of various classes of distant galaxies has
enabled great progress in understanding the star formation and
mass assembly history of normal field galaxies (for recent
reviews, see Hopkins & Beacom 2006; Ellis 2008; Wilkins
et al. 2008). Multiwavelength probes have been particularly
effective in revealing the coexistence of diverse categories of
galaxies with redshifts z >~ 2-3. These include the relatively
unobscured star-forming “Lyman break” galaxies (LBGs, e.g.,
Steidel et al. 1996; Shapley et al. 2005), the infrared-selected
massive “distant red” galaxies (DRGs; e.g., Franx et al. 2003;
van Dokkum et al. 2006) and heavily obscured submillimeter
galaxies which contain both intensely star-forming and active
components (SMGs; e.g., Smail et al. 1998; Chapman et al.
2005). The collective study of these populations has revealed
that the redshift range 1 < z < 3 is a formative one when the
bulk of the stars in present-day massive galaxies was produced
(Hopkins & Beacom 2006).
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Figure 9. Stellar mass vs. absolute magnitude at 1500 A (uncorrected for dust
extinction) over z =~ 4-6. Small red circles correspond to inferred stellar masses
and rest-UV absolute magnitudes for individual B drops (top), V drops (middle)
and i’ drops (bottom) assuming a T = 100 Myr exponential decay model.
The dark solid circles are the median stellar mass in each magnitude bin. The
relationship at z =~ 4 is overlaid on the z >~ 5 and z > 6 panels as a black solid
dashed line. The vertical solid lines the adopted )l limits
for each sample. The median stellar mass increases monotonically with M;sgy
in each dropout sample; however, at a fixed M50, the median stellar mass does
not decrease significantly with increasing redshift, as may be expected in simple
steady growth models.

(A color version of this figure is available in the online journal.)

the ratio of median stellar mass to emerging UV luminosity does
not evolve significantly for LBGs over z = 4-6. A galaxy with a
given M 500 at z =~ 6 will, on average, have the same assembled
mass (to within a factor of >~ 2) as a galaxy seen at z >~ 4 with
the same Msy. This suggests that the specific SFR evolves
weakly over 4 < z < 6, indicating that the typical duration of
past star formation for a galaxy of a given luminosity does not
vary significantly between z 2~ 6 and 4.

While the inclusion of a dust correction would shift the
M,—M 5y relation brightward (i.e., to the left in Figure 9), it
would likely not lead to an increase in the normalization of the
M,—M, 500 relation over time. As has been shown elsewhere
(e.g., Stanway et al. 2005; Bouwens et al. 2007) galaxies
at Ms00 < —19.8 do potentially become marginally dustier
between z >~ 6 and 4 which would cause the z >~ 4 M,—M s
relation to shift slightly more than the z >~ 5 and 6 relations.
Suce ate ctive shift briguwarc is 10ughly the surie as a shit
toward lower stellar masses at fixed M5, this would actually
have the effect of slightly decreasing the normalization of the
M,—M 509 relation over the 4 < z < 6 redshift range.

6.1. Testing the Steady Growth Scenario

We now attempt to place the M,—M s relation presented in
Figure 9 in the context of the steady growth scenario discussed
at the outset of this section. To approximate this scenario,
we assume that galaxies follow a constant SFR. Using solar
metallicity templates and allowing the dust content to freely
vary, we find that the typical implied star formation lifetimes
of the B drops are in excess of 700 Myr in the two brightest
bins (Figure 10), implying that the precursors of the majority
of B drops would have been equally luminous in V- and
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galaxies which contain both intensely star-forming and active
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2005). The collective study of these populations has revealed
that the redshift range 1 < z < 3 is a formative one when the
bulk of the stars in present-day massive galaxies was produced
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Figure 9. Stellar mass vs. absolute magnitude at 1500 A (uncorrected for dust
extinction) over z =~ 4-6. Small red circles correspond to inferred stellar masses
and rest-UV absolute magnitudes for individual B drops (top), V drops (middle)
and i’ drops (bottom) assuming a T = 100 Myr exponential decay model.
The dark solid circles are the median stellar mass in each magnitude bin. The
relationship at z =~ 4 is overlaid on the z >~ 5 and z > 6 panels as a black solid
dashed line. The vertical solid lines the adopted )l limits
for each sample. The median stellar mass increases monotonically with M;sgy
in each dropout sample; however, at a fixed M50, the median stellar mass does
not decrease significantly with increasing redshift, as may be expected in simple
steady growth models.

(A color version of this figure is available in the online journal.)
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Notes. The stellar masses and ages are inferred from models using a Salpeter
IMF and solar metallicity. In Column 3, we present the median stellar masses
(and the range of masses spanned by the middle 80% of the distribution)
determined from an exponentially declining star formation history with 7 =
100 Myr. In Column 4, we provide the median stellar masses inferred assuming
a constant star formation history. In Column 5, we present the median ages
inferred for the ¢ = 100 Myr models.

shown in Table 2, the absence of a systematic increase in the
average stellar masses is not strongly dependent on the chosen
star formation history. Overall these results seem to imply that
the ratio of median stellar mass to emerging UV luminosity does
not evolve significantly for LBGs over z = 4-6. A galaxy with a
given M 500 at z =~ 6 will, on average, have the same assembled
mass (to within a factor of >~ 2) as a galaxy seen at z >~ 4 with
the same Msy. This suggests that the specific SFR evolves
weakly over 4 < z < 6, indicating that the typical duration of
past star formation for a galaxy of a given luminosity does not
vary significantly between z 2~ 6 and 4.

While the inclusion of a dust correction would shift the
M,—M 5y relation brightward (i.e., to the left in Figure 9), it
would likely not lead to an increase in the normalization of the
M,—M, 500 relation over time. As has been shown elsewhere
(e.g., Stanway et al. 2005; Bouwens et al. 2007) galaxies
at Ms00 < —19.8 do potentially become marginally dustier
between z >~ 6 and 4 which would cause the z >~ 4 M,—M s
relation to shift slightly more than the z >~ 5 and 6 relations.
Since a relative shift brightward is roughly the same as a shift
toward lower stellar masses at fixed M5, this would actually
have the effect of slightly decreasing the normalization of the
M,—M 509 relation over the 4 < z < 6 redshift range.

6.1. Testing the Steady Growth Scenario

We now attempt to place the M,—M s relation presented in
Figure 9 in the context of the steady growth scenario discussed
at the outset of this section. To approximate this scenario,
we assume that galaxies follow a constant SFR. Using solar
metallicity templates and allowing the dust content to freely
vary, we find that the typical implied star formation lifetimes
of the B drops are in excess of 700 Myr in the two brightest
bins (Figure 10), implying that the precursors of the majority
of B drops would have been equally luminous in V- and
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The detailed study of various classes of distant galaxies has
enabled great progress in understanding the star formation and
mass assembly history of normal field galaxies (for recent
reviews, see Hopkins & Beacom 2006; Ellis 2008; Wilkins
et al. 2008). Multiwavelength probes have been particularly
effective in revealing the coexistence of diverse categories of
galaxies with redshifts z >~ 2-3. These include the relatively
unobscured star-forming “Lyman break” galaxies (LBGs, e.g.,
Steidel et al. 1996; Shapley et al. 2005), the infrared-selected
massive “distant red” galaxies (DRGs; e.g., Franx et al. 2003;
van Dokkum et al. 2006) and heavily obscured submillimeter
galaxies which contain both intensely star-forming and active
components (SMGs; e.g., Smail et al. 1998; Chapman et al.
2005). The collective study of these populations has revealed
that the redshift range 1 < z < 3 is a formative one when the
bulk of the stars in present-day massive galaxies was produced
(Hopkins & Beacom 2006).
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Figure 9. Stellar mass vs. absolute magnitude at 1500 A (uncorrected for dust
extinction) over z =~ 4-6. Small red circles correspond to inferred stellar masses
and rest-UV absolute magnitudes for individual B drops (top), V drops (middle)
and i’ drops (bottom) assuming a T = 100 Myr exponential decay model.
The dark solid circles are the median stellar mass in each magnitude bin. The
relationship at z =~ 4 is overlaid on the z >~ 5 and z > 6 panels as a black solid
dashed line. The vertical solid lines the adopted )l limits
for each sample. The median stellar mass increases monotonically with M;sgy
in each dropout sample; however, at a fixed M50, the median stellar mass does
not decrease significantly with increasing redshift, as may be expected in simple
steady growth models.

(A color version of this figure is available in the online journal.)
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Notes. The stellar masses and ages are inferred from models using a Salpeter
IMF and solar metallicity. In Column 3, we present the median stellar masses
(and the range of masses spanned by the middle 80% of the distribution)
determined from an exponentially declining star formation history with 7 =
100 Myr. In Column 4, we provide the median stellar masses inferred assuming
a constant star formation history. In Column 5, we present the median ages
inferred for the ¢ = 100 Myr models.

shown in Table 2, the absence of a systematic increase in the
average stellar masses is not strongly dependent on the chosen
star formation history. Overall these results seem to imply that
the ratio of median stellar mass to emerging UV luminosity does
not evolve significantly for LBGs over z = 4-6. A galaxy with a
given M 500 at z =~ 6 will, on average, have the same assembled
mass (to within a factor of >~ 2) as a galaxy seen at z >~ 4 with
the same Msy. This suggests that the specific SFR evolves
weakly over 4 < z < 6, indicating that the typical duration of
past star formation for a galaxy of a given luminosity does not
vary significantly between z 2~ 6 and 4.

While the inclusion of a dust correction would shift the
M,—M 5y relation brightward (i.e., to the left in Figure 9), it
would likely not lead to an increase in the normalization of the
M,—M, 500 relation over time. As has been shown elsewhere
(e.g., Stanway et al. 2005; Bouwens et al. 2007) galaxies
at Ms00 < —19.8 do potentially become marginally dustier
between z >~ 6 and 4 which would cause the z >~ 4 M,—M s
relation to shift slightly more than the z >~ 5 and 6 relations.
Since a relative shift brightward is roughly the same as a shift
toward lower stellar masses at fixed M5, this would actually
have the effect of slightly decreasing the normalization of the
M,—M 509 relation over the 4 < z < 6 redshift range.

6.1. Testing the Steady Growth Scenario

We now attempt to place the M,—M s relation presented in
Figure 9 in the context of the steady growth scenario discussed
at the outset of this section. To approximate this scenario,
we assume that galaxies follow a constant SFR. Using solar
metallicity templates and allowing the dust content to freely
vary, we find that the typical implied star formation lifetimes
of the B drops are in excess of 700 Myr in the two brightest
bins (Figure 10), implying that the precursors of the majority
of B drops would have been equally luminous in V- and
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extinction). It is not necessarily obvious that the ongoing star
formation in any galaxy should bear any relation to the past
star formation history, yet immediately apparent is a correlation
between the average optical and mid-infrared flux: sources that
are brighter in the ACS bandpasses are, on average, brighter
in IRAC. Also noticeable is that the median IRAC flux for
a given i775 or zgsp flux does not change significantly over
the redshift range probed by the three dropout samples. We
discuss the implications of these trends in more detail in
Section 6.

4.2. MIPS Detections

‘We have put considerable effort into removing low-redshift
contaminants from our data set. However, as is evident from
Figure 4, the dropout samples still contain red objects, some
of which are among the brightest sources detected in IRAC.
Considering the fact that very massive sources (with bright
IRAC fluxes) are likely much more common at z =~ 2 than
at z 2 4, it is clear that these sources require more scrutiny
before proceeding.

We can gain some insight into the likely redshifts of this
population from 24 pm imaging with the Multiband Imaging
Photometer for Spitzer (MIPS) camera (Dickinson et al., in
preparation; Chary et al., in preparation). At z > 2, the MIPS
imaging passband probes the bright rest-frame 7.7 um feature
from polycyclic aromatic hydrocarbons (PAHs). As a result,
dusty star-forming galaxies at z >~ 2 are commonly detected
with the MIPS (e.g., Reddy et al. 2006). Such PAH features
would not be detected in sources over the redshift range our
dropouts sample (4 < z < 6); hence if any of our sources are de-
tected with MIPS, it very well may indicate that they lieatz > 2.

In order to determine what fraction of our catalog is detected
at 24 pm, we visually examine the MIPS data of each dropout in
the Spitzer-isolated sample. While the total number of dropouts
with MIPS detections is small (12/800 B drops, 3/186 V drops,
and none of the i’ drops), it is not negligible. As expected, each of
the sources detected with MIPS is quite red (245, — m3,6 2 2) in
addition to being bright in the IRAC bandpasses. These sources
thus make up a significant fraction of the subset of our dropout
samples with bright IRAC fluxes (10/25, 2/4 of those with
m3¢ < 23 for the B and V drops, respectively) and are hence
sure to strongly affect attempts to derive the number density of
massive galaxies.

While we consider these sources as prime low-redshift
candidates, it is possible that some of these lie at z = 4. Cross-
correlating the 24 pum detected subset with our spectroscopic
sample, we find that one of the three MIPS-detected V drops has
a spectroscopically confirmed redshift of z = 4.76. Since there
are few strong PAH features that fall into the 24 ym filter at this
redshift, we propose that the 24 sm emission most likely comes
from a dusty active galactic nuclei, a conclusion consistent
with the point-like morphology in the observed optical-frame.
Importantly, this establishes that not all 24 ;zm detected dropouts
are foreground objects. The MIPS-detected subsample thus
places an upper limit (1.5% for the B drops and 1.1% for the V/
drops) on the number of dusty low-z interlopers remaining in
our samples. In subsequent sections, we will derive the evolving
stellar populations of our dropout sample both with and without
the 24 pm detected sources.

5. DERIVATION OF PHYSICAL PROPERTIES

‘We infer stellar masses for the dropout sample by fitting
the latest CBO7 stellar population synthesis models to the
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ABSTRACT

Using new and published data, we construct a sample of 160 brightest cluster galaxies
(BCGs) spanning the redshift interval 0.03 < z < 1.63. We use this sample, which
covers 70% of the history of the universe, to measure the growth in the stellar mass of
BCGs after correcting for the correlation between the stellar mass of the BCG and the
mass of the cluster in which it lives. We find that the stellar mass of BCGs increase
by a factor of 1.8 £ 0.3 between z = 0.9 and z = 0.2. Compared to earlier works, our
result is closer to the predictions of semi-analytic models. However, BCGs at z = 0.9,
relative to BCGs at z = 0.2, are still a factor of 1.5 more massive than the predictions
of these models. Star formation rates in BCGs at z ~ 1 are generally too low to result
in significant amounts of mass. Instead, it is likely that most of the mass build up
occurs through mainly dry mergers in which perhaps half of the mass is lost to the
intra-cluster medium of the cluster.

Key words: galaxies: clusters: general — galaxies: evolution — galaxies: high-redshift
— cosmology: observations

1 INTRODUCTION standing of the processes that drive galaxy evolution, albeit
in the most massive galaxies of the universe.

In the hierarchical scenario for the formation of struc-
ture in our universe, galaxies start off as small fluctuations
in the density of matter and build up their stellar mass
over time by converting material accreted from their sur-
roundings into stars and by merging with other galaxies (see
Baugh 2006, for a review). In semi-analytic models that use
the hierarchical scenario as their foundation, the stellar mass
of a BCG increases significantly with time. For example, be-
tween redshift z = 1.0 (corresponding to a look-back time of
* E-mail: clidman@aao.gov.au 6.7 Gyr) to z = 0, the semi-analytic model described in De

Brightest Cluster Galaxies (BCGs) are amongst the largest,
most luminous and most massive galaxies in the universe at
the present epoch. Located in the cores of rich galaxy clus-
ters, BCGs are easy to identify, both observationally and
in simulations. They can also be observed at a time when
the universe was less than a third of its current age. They
therefore provide an attractive target for testing our under-

© 2002 RAS
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ABSTRACT

The formation of galaxies is regulated by a balance between the supply of gas and the rate
at which it is ejected. Traditional explanations of gas ejection equate the energy required to
escape the galaxy or host halo to an estimate for the energy yield from supernovge—Lti<

yield is usually assumed to be a constant fraction of the total available from the sugern
or is derived from the assumption of a consistent momentum yield. By applying thefe i
in the context of a cold dark matter cosmogony, we derive a first-order analytic corjnec
between these working assumptions and the expected relationship between baryon fcor 7
and galaxy circular velocity, and find that these quick predictions straddle recent obserfati . y

estimates. To examine the premises behind these theories in more detail, we then explgre 1 1016 r 4 p
applicability to a set of gasdynamical simulations of idealized galaxies. We show that diffe
premises dominate to differing degrees in the simulated outflow, depending on the fnas
the system and the resolution with which it is simulated. Using this study to anticipate
emergent behaviour at arbitrarily high resolution, we motivate more comprehensive fina
model which allows for the range of velocities with which the gas may exit the syst¢m,
incorporates both momentum and energy-based constraints on the outflow. Using a tfial
velocity distribution, this is shown to be compatible with the observed baryon fracfior
intermediate-mass systems, but implies that current estimates for low-mass systems cgnnc
solely accounted for by supernova winds under commonly held assumptions.

1015 L

Key words: supernovae: general — ISM: supernova remnants — galaxies: evolution — gpla:
formation.

is readily available from the supernovae. Because the grayitat
potential barrier will increase with host halo mass, the fractipn ¢
supernova-driven wind which escapes might intuitively be ¢xpc
to be greater for lower mass systems, and this does indeed]see
be qualitatively upheld by the mass dependence seen in thd mc

10 14 L
data.

A more quantitative version of this theory was then devejope /

1 INTRODUCTION

Any viable theory of the formation and evolution of galaxies should
be able to account for the mass of baryons contained, or rather
not contained, in the massive collapsed regions that host galaxies.
Observational constraints on the location of baryons in the Universe
imply that the fraction within these ‘haloes’ can be many times less

z2<0.3
B 03<2z2<08 |]

Cluster mass (M)

than the cosmic baryon fraction, fi, =~ 0.17 (e.g. Komatsu et al.
2011), and that the extent of the deficit is clearly dependent on the
host’s mass. This can be seen from the estimated baryonic and total
masses from seven separate surveys which were collected together
in one figure in the review by McGaugh et al. (2010); data which
are reproduced here in our Fig. 1.

The established explanation for this deficit, dating from long
before such observational data were available, is that baryons can
be driven from the galaxies — and their host haloes — by supernovae
explosions (Matthews & Baker 1971). This account is based on
the premise that the energy required to escape the galaxies’ gravity

*E-mail: martin.stringer@obspm.fr

Larson (1974), who equated this potential barrier with an psti
of the energy yield per supernova (and hence per mass|of
formed). In Section 2, we review the arguments in this classjc th
and, by updating the basic premises to include a cold dark m
(CDM) component in the haloes, show how it leads to the fifst-c
theoretical predictions for baryon fractions which are overfaid
the observational estimates in Fig. 1. We also take the opgorti
to contrast the scaling expected from the traditional assumptio
consistent energy conversion to the ejected material (Sectjon
with the alternative working assumption of a consistent mdme.
yield (Section 2.2).

‘We then go on, in Section 3, to investigate how moderr} simuiu-
tions of disc galaxies relate to these analytic theories, using aspects
of the theory to understand the behaviour which emergdes—&
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Figure 1. Galactic baryonic mass estimates from several publications,
shown as a function of the virialized host halo mass (estimated from ob-
served circular velocity or velocity dispersion). The lines show the simple
prediction of self-similarity (dashed line), the prediction based on consistent
conversion of supernovae energy to gravitational potential energy gain by the
escaped gas (solid line) and a similar prediction based on consistent momen-
tum yield (dotted line) using the values vy, = vgy = 300km s~ 1. This plotis
deliberately similar in layout to fig. 1 of McGaugh et al. (2010) and uses the
same conversion from characteristic speed to host halo mass: M,/10'2 Mg
~ (vc/187kms~")*. Round symbols represent rotationally supported discs,
where v, is the outermost measurement of ular velocity. Square sym-
bols represent pressure supported systems for which v, = +/30 is assumed,
where o is the observed line-of-sight velocity dispersion.

these numerical experiments, depending on the parameters of the
simulated supernovae and the resolution with which the system is
simulated. This investigation is then used to motivate revisions to
the traditional premises and in Section 4 we present an alternative
derivation of the outflow which is built on more realistic assump-
tions, whilst keeping to the spirit of the original elegant theories.

2 THEORETICAL BACKGROUND

2.1 Consistent energy conversion

The earliest attempt to quantify the mass outflow due to supernova
was by Larson (1974). This brought the idea of Matthews & Baker
(1971) together with work on the evolution of supernova remnants
(Cox 1972) to estimate that 10 per cent of the original supernova
energy will be retained as thermal and kinetic energy in the gas,
a figure calculated by considering the energy that would still be
contained within supernova remnants at the point at which they
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ditions that it was considered, ‘under most circumstances likely to
be encountered in practice’, accurate ‘to within about a factor of 2’.
This figure could then be incorporated into their model of gas
ejection under the additional premise:
‘... that all of t ilahle energy of 0 1F.. ic evnended in

removing gas fromj the

This premise can |be
energy conversion)in

system to another gnd
energy gained by the g
relation: 1016 |
vaf ~ nEsw,
where M. is the njass
ity of the system (Hefi
velocity) and 7 is the f
converted into the ene
nova yield to be pippo
can be written as
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Ve
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proximately, by simply combining equation (1) with the additional
constraint that the retained and escaped masses must add up to give
the cosmic fraction, fy, of their host halo, (M, + Mee = foM,).
This leads to a simple relationship between remaining baryonic
mass, My, and total virial mass M, (or characteristic speed v.) that
is plotted' in Fig. 1:

My~ — DM 5 [f. = M‘] . 3)

L+ fi (usn/ve) M,

Therefore nlaced in the context of CDM cosmoocony | arcon (1074)
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distant (z>~1.5), massive clusters were discovered in IR and X-ray surveys, and the first high-z
clusters discovered through the Sunyaev-Zeldovich (SZ) effect were found thanks to the new

telescopes SPT, Planck, ACT. Massive (>~3.101% Msun), high-redshift clusters are expected to
be rare in the standard LCDM model. Therefore, robust mass measurements obtained from a
combination of high-resolution X-ray and weak/strong lensing data are required to place stringent
tests to the current cosmological paradigm. On the other hand, the underlying galaxy populations
of these high-z clusters start to show signs of evolution relative to nearby systems, e.g. a reversal
of star formation ("infrared Butchler-Oemler" effect). In this respect, the FIR Herschel data offers
a new observational window, expected to provide valuable insights on their star-formation
properties. Concurrently, significant progress had been done in the study of proto-clusters at
z>1.6. A multi-wavelength approach is thus mandatory to gain a deeper understanding on the
physical properties of these distant systems, obtain accurate mass measurements, and constrain
the formation epoch of galaxy clusters. The aim of this conference is to discuss the latest results
in this field obtained with data at previously unexplored wavelengths, and investigate future
prospects with upcoming facilities such as ALMA, E-ELT, etc.
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ABSTRACT

Hot gaseous halos are predicted around all large galaxies and are critically important for our understanding of
galaxy formation, but they have never been detected at distances beyond a few kpc around a spiral galaxy. We
used the ACIS-I instrument on board Chandra to search for diffuse X-ray emission around an ideal candidate
galaxy: the isolated giant spiral NGC 1961. We observed four quadrants around the galaxy for 30 ks each, carefully
subtracting background and point-source emission, and found diffuse emission that appears to extend to 40-50 kpc.
We fit B-models to the emission and estimate a hot halo mass within 50 kpc of 5 x 10° M. When this profile
is extrapolated to 500 kpc (the approximate virial radius), the implied hot halo mass is 1-3 x 10'' M. These
mass estimates assume a gas metallicity of Z = 0.5 Z. This galaxy’s hot halo is a large reservoir of gas, but falls
significantly below observational upper limits set by pervious searches, and suggests that NGC 1961 is missing 75%
of its baryons relative to the cosmic mean, which would tentatively place it below an extrapolation of the baryon
Tully-Fisher relationship of less massive galaxies. The cooling rate of the gas is no more than 0.4 My, yr~!, more
than an order of magnitude below the gas consumption rate through star formation. We discuss the implications of
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this halo for galaxy formation models.
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1. INTRODUCTION

Hot gaseous halos around galaxies have been an important
prediction of galaxy formation models since White & Rees
(1978). Theory predicts these hot halos form as matter accretes
onto the dark matter halo and the baryons shock to the virial
temperature (White & Frenk 1991; also see the review by
Benson 2010). Depending on the details of the assumed pre-
heating, heating from galactic feedback, and cooling rates,
these hot halos are often predicted to contain as much or more
baryonic mass as the galaxies within the halos (Sommer-Larsen
2006; Fukugita & Peebles 2006), making them cosmologically
important as reservoirs of the “missing baryons” from galaxies
(although see also Anderson & Bregman 2010). The hot halo is
also thought to produce the galactic color-magnitude bimodality
(Dekel & Birnboim 2006) and to help explain galactic “down-
sizing” in the star formation history (Bower et al. 2006; De
Lucia et al. 2006).

Hot halos have been extensively observed in soft X-rays
(roughly 0.5-2 keV) around early-type galaxies (Forman et al.
1985; O’Sullivan et al. 2001; Mulchaey & Jeltema 2010). The
halos are typically luminous (Lx.o.5—2kev ~ 10¥-10*' for non-
BCG ellipticals), mass-dependent (for most definitions of Lx
and Lk, Lx Li), and are often visible out to many tens
of kpc. But these halos are difficult to connect to the formation
of the galaxies because coronal gas can also be produced in the
mergers and associated star formation that occurred when the
galaxy became elliptical (Read & Ponman 1998), and because
itis difficult to disentangle halo gas with the intergroup medium
(IGM) in which most large ellipticals reside (Dressler 1980).

In contrast, hot halos around quiescent disk galaxies should
be much more direct tracers of the galaxy formation process.
While the morphology—density relation makes it difficult to
disentangle elliptical galaxies from their dense environments,
it also ensures a large supply of isolated spiral galaxies in low-

density environments. Late-type disks are destroyed by strong
mergers (e.g., Robertson et al. 2006), and it is easy to identify
and exclude starbursting galaxies, so it should be straightforward
to search for hot halos around quiescent isolated spirals and to
connect these halos to models of galaxy formation.

Unfortunately, the search for extended soft X-ray emission
around isolated spirals has so far been unsuccessful. There
are several detections of emission a few kpc above the disk
(Strickland et al. 2004a; Li et al. 2006; Tiillmann et al. 2006;
Rasmussen et al. 2009; Owen & Warwick 2009; Yamasaki et al.
2009), but these observations are linked to the star formation in
the galaxy and probably represent galactic fountains. In terms of
more extended emission, Li et al. (2007) observe gas around the
Sombrero galaxy out to 20 kpc, but this galaxy is significantly
bulge-dominated, and the extended emission has been linked
to a galactic bulge-driven wind. Finally, Pedersen et al. (2006)
claimed to detect extended hot halo emission around NGC 5746,
but this emission disappeared after subsequent reanalysis with
newer calibration files (Rasmussen et al. 2009).

A recent paper (Crain et al. 2010b) attributes these detections
of extended emission to galactic coronae, instead of the standard
explanation of the emission as a fountain or a wind originating
from within the galaxy. This interpretation is in disagreement
with the standard understanding of galactic fountains in spiral
galaxies, but regardless of interpretation it still is true that no
hot halo has been detected around a disk galaxy at a radius of
more than a few kpc.

In this paper, we present an analysis of observations by the
ACIS-I array on board the Chandra X-ray Observatory of the
environs of the extremely massive spiral galaxy NGC 1961,
in which we detect X-ray emission out to at least 40 kpc and
attribute the emission to a hot halo. The outline of the paper
is as follows. In Section 2, we discuss the properties of NGC
1961 and the details of our observation. In Section 3, we discuss
the reduction of the data and explain various approaches to flat
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onto the dark matter halo and the baryons shock to the virial
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Benson 2010). Depending on the details of the assumed pre-
heating, heating from galactic feedback, and cooling rates,
these hot halos are often predicted to contain as much or more
baryonic mass as the galaxies within the halos (Sommer-Larsen
2006; Fukugita & Peebles 2006), making them cosmologically
important as reservoirs of the “missing baryons” from galaxies
(although see also Anderson & Bregman 2010). The hot halo is
also thought to produce the galactic color-magnitude bimodality
(Dekel & Birnboim 2006) and to help explain galactic “down-
sizing” in the star formation history (Bower et al. 2006; De
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Hot halos have been extensively observed in soft X-rays
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halos are typically luminous (Lx.o.5—2kev ~ 10¥-10*' for non-
BCG ellipticals), mass-dependent (for most definitions of Lx
and Lk, Lx Li), and are often visible out to many tens
of kpc. But these halos are difficult to connect to the formation
of the galaxies because coronal gas can also be produced in the
mergers and associated star formation that occurred when the
galaxy became elliptical (Read & Ponman 1998), and because
itis difficult to disentangle halo gas with the intergroup medium
(IGM) in which most large ellipticals reside (Dressler 1980).

In contrast, hot halos around quiescent disk galaxies should
be much more direct tracers of the galaxy formation process.
While the morphology—density relation makes it difficult to
disentangle elliptical galaxies from their dense environments,
it also ensures a large supply of isolated spiral galaxies in low-

density environments. Late-type disks are destroyed by strong
mergers (e.g., Robertson et al. 2006), and it is easy to identify
and exclude starbursting galaxies, so it should be straightforward
to search for hot halos around quiescent isolated spirals and to
connect these halos to models of galaxy formation.

Unfortunately, the search for extended soft X-ray emission
around isolated spirals has so far been unsuccessful. There
are several detections of emission a few kpc above the disk
(Strickland et al. 2004a; Li et al. 2006; Tiillmann et al. 2006;
Rasmussen et al. 2009; Owen & Warwick 2009; Yamasaki et al.
2009), but these observations are linked to the star formation in
the galaxy and probably represent galactic fountains. In terms of
more extended emission, Li et al. (2007) observe gas around the
Sombrero galaxy out to 20 kpc, but this galaxy is significantly
bulge-dominated, and the extended emission has been linked
to a galactic bulge-driven wind. Finally, Pedersen et al. (2006)
claimed to detect extended hot halo emission around NGC 5746,
but this emission disappeared after subsequent reanalysis with
newer calibration files (Rasmussen et al. 2009).

A recent paper (Crain et al. 2010b) attributes these detections
of extended emission to galactic coronae, instead of the standard
explanation of the emission as a fountain or a wind originating
from within the galaxy. This interpretation is in disagreement
with the standard understanding of galactic fountains in spiral
galaxies, but regardless of interpretation it still is true that no
hot halo has been detected around a disk galaxy at a radius of
more than a few kpc.

In this paper, we present an analysis of observations by the
ACIS-I array on board the Chandra X-ray Observatory of the
environs of the extremely massive spiral galaxy NGC 1961,
in which we detect X-ray emission out to at least 40 kpc and
attribute the emission to a hot halo. The outline of the paper
is as follows. In Section 2, we discuss the properties of NGC
1961 and the details of our observation. In Section 3, we discuss
the reduction of the data and explain various approaches to flat

7.3. Halo Cooling Rates and Implications for Galaxy
Formation

We can estimate the cooling radius of this hot halo and the
implied accretion rate onto the galaxy, which has implications
for setting and regulating the star formation rate in the galaxy.
We define the cooling radius as the radius for which the cooling
time is 10 Gyr, using the expression for cooling time from
Fukugita & Peebles (2006):

1.5nkT _ 1.5KT x 1.92
An,(n —n,)  An, x 0.92

: )

T(r) =

where the latter expression assumes primeval helium abundance
so that the total particle density n = 1.92n,. For T = 105% K
and Z = 0.5Zo, A = 1072% erg cm® s~ (Sutherland
& Dopita 1993). Thus, the cooling radius occurs at n, =
6.8 x 10~ cm~3. For the range of best-fit -model profiles listed
above, this corresponds to a cooling radius between 17.8 and
18.2 kpc, and an interior hot halo mass of 8.9-10.2 x 108 M.
It is difficult to estimate the accretion rate onto the disk from
this hot halo, since the heating rate is unconstrained, but we
can make an order-of-magnitude estimate by dividing the hot
gas thermal energy within the 10 Gyr cooling radius by the
luminosity within that radius; this yields a cooling time of
2.0-2.4 Gyr for material within the cooling radius, or an
effective cooling rate of 0.4 My yr~!. In contrast, we can
estimate the star formation rate in NGC 1961 from the total
Ho luminosity (7.640.9 x 10*! erg s~!) using the relation
in Kennicutt (1998): star formation rate SFR = 7.9 x 10=%?
L(Ha) = 6.040.7 M, yr~'. The halo accretion rate is therefore
insufficient to produce the star formation rate of the galaxy.
More relevant for galaxy formation, the halo accretion rate is
two orders of magnitude too low to assemble the stellar mass
of this galaxy within a Hubble time. If we preserve B and r( for
the halo, but increase Sy to add the present-day stellar mass of
3.1 x 10'" M, to the halo, the cooling rate becomes 1.2-1.8 M,
yr~!, which is still insufficient to assemble the stellar mass by a
factor of 20.
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mergers (e.g., Robertson et al. 2006), and it is easy to identify
and exclude starbursting galaxies, so it should be straightforward
to search for hot halos around quiescent isolated spirals and to
connect these halos to models of galaxy formation.
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explanation of the emission as a fountain or a wind originating
from within the galaxy. This interpretation is in disagreement
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galaxies, but regardless of interpretation it still is true that no
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ACIS-I array on board the Chandra X-ray Observatory of the
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1961 and the details of our observation. In Section 3, we discuss
the reduction of the data and explain various approaches to flat
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Formation
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2.0-24 Gyr hin_the cooling radius, or an

coohng rate of 04M@ yr~— . Jn contrast, we can
estimate the 5 C 1961 from the total
Ho luminosity (7. 6:|:0 9 X 1041 erg s~!) using the relation
in Kennicutt (1998): star formation rate SFR = 7.9 x 10=%?
L(Ha) = 6.040.7 M, yr~'. The halo accretion rate is therefore
insufficient to produce the star formation rate of the galaxy.
More relevant for galaxy formation, the halo accretion rate is
two orders of magnitude too low to assemble the stellar mass
of this galaxy within a Hubble time. If we preserve B and r( for
the halo, but increase Sy to add the present-day stellar mass of
3.1 x 10'" M, to the halo, the cooling rate becomes 1.2-1.8 M,
yr~!, which is still insufficient to assemble the stellar mass by a
factor of 20.
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Hot gaseous halos are predicted around all large galaxies and are critically important for our understanding of
galaxy formation, but they have never been detected at distances beyond a few kpc around a spiral galaxy. We
used the ACIS-I instrument on board Chandra to search for diffuse X-ray emission around an ideal candidate
galaxy: the isolated giant spiral NGC 1961. We observed four quadrants around the galaxy for 30 ks each, carefully
subtracting background and point-source emission, and found diffuse emission that appears to extend to 40-50 kpc.
We fit B-models to the emission and estimate a hot halo mass within 50 kpc of 5 x 10° M. When this profile
is extrapolated to 500 kpc (the approximate virial radius), the implied hot halo mass is 1-3 x 10'' M. These
mass estimates assume a gas metallicity of Z = 0.5 Z. This galaxy’s hot halo is a large reservoir of gas, but falls
significantly below observational upper limits set by pervious searches, and suggests that NGC 1961 is missing 75%
of its baryons relative to the cosmic mean, which would tentatively place it below an extrapolation of the baryon
Tully-Fisher relationship of less massive galaxies. The cooling rate of the gas is no more than 0.4 My, yr~!, more
than an order of magnitude below the gas consumption rate through star formation. We discuss the implications of

this halo for galaxy formation models.
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1. INTRODUCTION

Hot gaseous halos around galaxies have been an important
prediction of galaxy formation models since White & Rees
(1978). Theory predicts these hot halos form as matter accretes
onto the dark matter halo and the baryons shock to the virial
temperature (White & Frenk 1991; also see the review by
Benson 2010). Depending on the details of the assumed pre-
heating, heating from galactic feedback, and cooling rates,
these hot halos are often predicted to contain as much or more
baryonic mass as the galaxies within the halos (Sommer-Larsen
2006; Fukugita & Peebles 2006), making them cosmologically
important as reservoirs of the “missing baryons” from galaxies
(although see also Anderson & Bregman 2010). The hot halo is
also thought to produce the galactic color-magnitude bimodality
(Dekel & Birnboim 2006) and to help explain galactic “down-
sizing” in the star formation history (Bower et al. 2006; De
Lucia et al. 2006).

Hot halos have been extensively observed in soft X-rays
(roughly 0.5-2 keV) around early-type galaxies (Forman et al.
1985; O’Sullivan et al. 2001; Mulchaey & Jeltema 2010). The
halos are typically luminous (Lx.o.5—2kev ~ 10¥-10*' for non-
BCG ellipticals), mass-dependent (for most definitions of Lx
and Lk, Lx Li), and are often visible out to many tens
of kpc. But these halos are difficult to connect to the formation
of the galaxies because coronal gas can also be produced in the
mergers and associated star formation that occurred when the
galaxy became elliptical (Read & Ponman 1998), and because
itis difficult to disentangle halo gas with the intergroup medium
(IGM) in which most large ellipticals reside (Dressler 1980).

In contrast, hot halos around quiescent disk galaxies should
be much more direct tracers of the galaxy formation process.
While the morphology—density relation makes it difficult to
disentangle elliptical galaxies from their dense environments,
it also ensures a large supply of isolated spiral galaxies in low-

density environments. Late-type disks are destroyed by strong
mergers (e.g., Robertson et al. 2006), and it is easy to identify
and exclude starbursting galaxies, so it should be straightforward
to search for hot halos around quiescent isolated spirals and to
connect these halos to models of galaxy formation.

Unfortunately, the search for extended soft X-ray emission
around isolated spirals has so far been unsuccessful. There
are several detections of emission a few kpc above the disk
(Strickland et al. 2004a; Li et al. 2006; Tiillmann et al. 2006;
Rasmussen et al. 2009; Owen & Warwick 2009; Yamasaki et al.
2009), but these observations are linked to the star formation in
the galaxy and probably represent galactic fountains. In terms of
more extended emission, Li et al. (2007) observe gas around the
Sombrero galaxy out to 20 kpc, but this galaxy is significantly
bulge-dominated, and the extended emission has been linked
to a galactic bulge-driven wind. Finally, Pedersen et al. (2006)
claimed to detect extended hot halo emission around NGC 5746,
but this emission disappeared after subsequent reanalysis with
newer calibration files (Rasmussen et al. 2009).

A recent paper (Crain et al. 2010b) attributes these detections
of extended emission to galactic coronae, instead of the standard
explanation of the emission as a fountain or a wind originating
from within the galaxy. This interpretation is in disagreement
with the standard understanding of galactic fountains in spiral
galaxies, but regardless of interpretation it still is true that no
hot halo has been detected around a disk galaxy at a radius of
more than a few kpc.

In this paper, we present an analysis of observations by the
ACIS-I array on board the Chandra X-ray Observatory of the
environs of the extremely massive spiral galaxy NGC 1961,
in which we detect X-ray emission out to at least 40 kpc and
attribute the emission to a hot halo. The outline of the paper
is as follows. In Section 2, we discuss the properties of NGC
1961 and the details of our observation. In Section 3, we discuss
the reduction of the data and explain various approaches to flat

7.3. Halo Cooling Rates and Implications for Galaxy
Formation

We can estimate the cooling radius of this hot halo and the
implied accretion rate onto the galaxy, which has implications
for setting and regulating the star formation rate in the galaxy.
We define the cooling radius as the radius for which the cooling
time is 10 Gyr, using the expression for cooling time from
Fukugita & Peebles (2006):

1.5kT x 1.92
An, x 0.92

: )

where the latter expression assumes primeval helium abundance
so that the total particle density n = 1.92n,. For T = 105% K
and Z = 0.5Zo, A = 1072% erg cm® s~ (Sutherland
& Dopita 1993). Thus, the cooling radius occurs at n, =
6.8 x 10~ cm~3. For the range of best-fit -model profiles listed
above, this corresponds to a cooling radius between 17.8 and
18.2 kpc, and an interior hot halo mass of 8.9-10.2 x 108 M.
It is difficult to estimate the accretion rate onto the disk from
this hot halo, since the heating rate is unconstrained, but we
can make an order-of-magnitude estimate by dividing the hot
gas thermal energy within the 10 Gyr cooling radius by the
luminosity within that radlus th1s yields a cooling time of
2.0-24 Gyr hin_the cooling radius, or an

coohng rate of 04M@ yr~— . Jn contrast, we can
estimate the 5 C 1961 from the total
Ho luminosity (7. 6:|:0 9 X 1041 erg s~!) using the relation
in Kennicutt (1998): star formation rate SFR = 7.9 x 10=%?
L(Ha) = 6.040.7 M, yr~'. The halo accretion rate is therefore
insufficient to produce the star formation rate of the galaxy.
More relevant for galaxy formation, the halo accretion rate is
two orders of magnitude too low to assemble the stellar mass
of this galaxy within a Hubble time. If we preserve B and r( for
the halo, but increase Sy to add the present-day stellar mass of
3.1 x 10'" M, to the halo, the cooling rate becomes 1.2-1.8 M,
yr~!, which is still insufficient to assemble the stellar mass by a
factor of 20.
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of its baryons relative to the cosmic mean, which would tentatively place it below an extrapolation of the baryon
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1. INTRODUCTION

Hot gaseous halos around galaxies have been an important
prediction of galaxy formation models since White & Rees
(1978). Theory predicts these hot halos form as matter accretes
onto the dark matter halo and the baryons shock to the virial
temperature (White & Frenk 1991; also see the review by
Benson 2010). Depending on the details of the assumed pre-
heating, heating from galactic feedback, and cooling rates,
these hot halos are often predicted to contain as much or more
baryonic mass as the galaxies within the halos (Sommer-Larsen
2006; Fukugita & Peebles 2006), making them cosmologically
important as reservoirs of the “missing baryons” from galaxies
(although see also Anderson & Bregman 2010). The hot halo is
also thought to produce the galactic color-magnitude bimodality
(Dekel & Birnboim 2006) and to help explain galactic “down-
sizing” in the star formation history (Bower et al. 2006; De
Lucia et al. 2006).

Hot halos have been extensively observed in soft X-rays
(roughly 0.5-2 keV) around early-type galaxies (Forman et al.
1985; O’Sullivan et al. 2001; Mulchaey & Jeltema 2010). The
halos are typically luminous (Lx.o.5—2kev ~ 10¥-10*' for non-
BCG ellipticals), mass-dependent (for most definitions of Lx
and Lk, Lx Li), and are often visible out to many tens
of kpc. But these halos are difficult to connect to the formation
of the galaxies because coronal gas can also be produced in the
mergers and associated star formation that occurred when the
galaxy became elliptical (Read & Ponman 1998), and because
itis difficult to disentangle halo gas with the intergroup medium
(IGM) in which most large ellipticals reside (Dressler 1980).

In contrast, hot halos around quiescent disk galaxies should
be much more direct tracers of the galaxy formation process.
While the morphology—density relation makes it difficult to
disentangle elliptical galaxies from their dense environments,
it also ensures a large supply of isolated spiral galaxies in low-

density environments. Late-type disks are destroyed by strong
mergers (e.g., Robertson et al. 2006), and it is easy to identify
and exclude starbursting galaxies, so it should be straightforward
to search for hot halos around quiescent isolated spirals and to
connect these halos to models of galaxy formation.

Unfortunately, the search for extended soft X-ray emission
around isolated spirals has so far been unsuccessful. There
are several detections of emission a few kpc above the disk
(Strickland et al. 2004a; Li et al. 2006; Tiillmann et al. 2006;
Rasmussen et al. 2009; Owen & Warwick 2009; Yamasaki et al.
2009), but these observations are linked to the star formation in
the galaxy and probably represent galactic fountains. In terms of
more extended emission, Li et al. (2007) observe gas around the
Sombrero galaxy out to 20 kpc, but this galaxy is significantly
bulge-dominated, and the extended emission has been linked
to a galactic bulge-driven wind. Finally, Pedersen et al. (2006)
claimed to detect extended hot halo emission around NGC 5746,
but this emission disappeared after subsequent reanalysis with
newer calibration files (Rasmussen et al. 2009).

A recent paper (Crain et al. 2010b) attributes these detections
of extended emission to galactic coronae, instead of the standard
explanation of the emission as a fountain or a wind originating
from within the galaxy. This interpretation is in disagreement
with the standard understanding of galactic fountains in spiral
galaxies, but regardless of interpretation it still is true that no
hot halo has been detected around a disk galaxy at a radius of
more than a few kpc.

In this paper, we present an analysis of observations by the
ACIS-I array on board the Chandra X-ray Observatory of the
environs of the extremely massive spiral galaxy NGC 1961,
in which we detect X-ray emission out to at least 40 kpc and
attribute the emission to a hot halo. The outline of the paper
is as follows. In Section 2, we discuss the properties of NGC
1961 and the details of our observation. In Section 3, we discuss
the reduction of the data and explain various approaches to flat

7.3. Halo Cooling Rates and Implications for Galaxy
Formation

We can estimate the cooling radius of this hot halo and the
implied accretion rate onto the galaxy, which has implications
for setting and regulating the star formation rate in the galaxy.
We define the cooling radius as the radius for which the cooling
time is 10 Gyr, using the expression for cooling time from
Fukugita & Peebles (2006):

1.5kT x 1.92
An, x 0.92
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where the latter expression assumes primeval helium abundance
so that the total particle density n = 1.92n,. For T = 105% K
and Z = 0.5Zo, A = 1072% erg cm® s~ (Sutherland
& Dopita 1993). Thus, the cooling radius occurs at n, =
6.8 x 10~ cm~3. For the range of best-fit -model profiles listed
above, this corresponds to a cooling radius between 17.8 and
18.2 kpc, and an interior hot halo mass of 8.9-10.2 x 108 M.
It is difficult to estimate the accretion rate onto the disk from
this hot halo, since the heating rate is unconstrained, but we
can make an order-of-magnitude estimate by dividing the hot
gas thermal energy within the 10 Gyr cooling radius by the
luminosity within that radlus th1s yields a cooling time of
2.0-24 Gyr hin_the cooling radius, or an

coohng rate of 04M@ yr~— . Jn contrast, we can
estimate the 5 C 1961 from the total
Ho luminosity (7. 6:|:0 9 X 1041 erg s~!) using the relation
in Kennicutt (1998): star formation rate SFR = 7.9 x 10=%?
L(Ha) = 6.040.7 M, yr~'. The halo accretion rate is therefore
insufficient to produce the star formation rate of the galaxy.
More relevant for galaxy formation, the halo accretion rate is
two orders of magnitude too low to assemble the stellar mass
of this galaxy within a Hubble time. If we preserve B and r( for
the halo, but increase Sy to add the present-day stellar mass of
31><10“M to the h es 1.2-1.8 My,
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factor of 20.
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ABSTRACT

The presence of extremely compact galaxies at z ~ 2 and their subsequent growth in physical size
has been the cause of much puzzlement. We revisit the question using deep infrared Wide Field
Camera 3 data to probe the rest-frame optical structure of 935 galaxies selected with 0.4 < z < 2.5
and stellar masses M, > 10'7M, in the UKIRT Ultra Deep Survey and GOODS-South fields of
the CANDELS survey. At each redshift, the most compact sources are those with little or no star
formation, and the mean size of these systems at fixed stellar mass grows by a factor of 3.5+ 0.3 over
this redshift interval. The data are sufficiently deep to identify companions to these hosts whose stellar
masses are ten times smaller. By searching for these around 404 quiescent hosts within a physical
annulus 10 h~! kpe < R < 30 h~! kpc, we estimate the minor merger rate over 0.4 < z < 2. We find
that 13% — 18% of quiescent hosts have likely physical companions with stellar mass ratios of 0.1 or
greater. Mergers of these companions will typically increase the host mass by 6% =+ 2% per merger
timescale. We estimate the minimum growth rate necessary to explain the declining abundance of
compact galaxies. Using a simple model motivated by recent numerical simulations, we then assess
whether mergers of the faint companions with their hosts are sufficient to explain this minimal rate.
We find that mergers may explain most of the size evolution observed at z < 1 if a relatively short
merger timescale is assumed, but the rapid growth seen at higher redshift likely requires additional
physical processes.

Subject headings: galaxies: evolution — galaxies: formation — galaxies: fundamental parameters —

galaxies: structure

1. INTRODUCTION

The compact nature of massive quiescent galaxies at
redshifts z ~ 2 was a surprising discovery when it was an-
nounced some years ago (e.g., Daddi et al. 2005; Trujillo
et al. 2006; Buitrago et al. 2008; van Dokkum et al. 2008).
Many red galaxies with stellar masses M, ~ 10''M
have effective radii R, ~ 1 kpc, 3 — 5 times smaller than
comparably massive early-type galaxies in the local uni-
verse. This suggests that they grew significantly in size,
but much less in stellar mass. Initially there was some
suspicion that the stellar masses of the z ~ 2 sources
were overestimated, but deep spectroscopic data (Cap-
pellari et al. 2009; Newman et al. 2010; van de Sande
et al. 2011) have verified dynamically the high masses of
selected 1 < z < 2 sources and, in conjunction with the
abundance of dynamical masses for lower redshift sources
(Treu et al. 2005; van der Wel et al. 2005), provided a
valuable, independent confirmation of the size evolution.

Only two physical explanations have been put forward
to explain this remarkable growth in size while avoid-
ing the overproduction of present-day high-mass galax-
ies. Adiabatic expansion through significant mass loss
can lead to size growth (Fan et al. 2008, 2010). A galaxy
that loses mass as a result of winds driven by an active
nucleus or supernovae, for example, will adjust its size in
response to the shallower central potential. However, the
“puffing up” arising from baryonic mass loss occurs only
when the system is highly active and young in terms of

anewman@astro.caltech.edu

its stellar population (Ragone-Figueroa & Granato 2011,
see also Bezanson et al. 2009), so it is difficult to see how
this mechanism can account for the gradual and persis-
tent growth in size observed for compact sources that are
mostly quiescent in nature.

In a hierarchical picture of galaxy formation, merg-
ers are expected to lead to growth in size and stellar
mass. Whereas major mergers, involving nearly equal-
mass components, will lead to comparable growth in both
size and mass, minor mergers involving lower-mass com-
panions can produce more efficient size growth (Bezan-
son et al. 2009; Naab et al. 2009; Hopkins et al. 2010c).
This mechanism requires a high rate of occurrence of
minor mergers, a significant fraction of which must in-
volve gas-poor companions. Although the major merger
rate is observationally constrained reasonably well over
0 < z <1 (eg., Kartaltepe et al. 2007; Lin et al. 2008;
Bundy et al. 2009; de Ravel et al. 2009; Lotz et al. 2011)
and via a few measurements up to z ~ 3 (e.g., Bluck et al.
2009; Man et al. 2011), the rate at which minor merging
occurs requires exquisitely deep photometric data. For
this hypothesis, the key question is whether observations
confirm that minor merging occurs at the required rate.

The infrared Wide Field Camera 3 (WFC3/IR) on
board the Hubble Space Telescope (HST) enables us to
address the question of whether minor merging is suffi-
ciently frequent to account for the size growth of com-
pact sources since z ~ 2. The CANDELS survey (GO
12444/5; PIs: H. C. Ferguson and S. M. Faber) provides
an excellent resource for addressing this question since,
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Camera 3 data to probe the rest-frame optical structure of 935 galaxies selected with 0.4 < z < 2.5
and stellar masses M, > 10'7M, in the UKIRT Ultra Deep Survey and GOODS-South fields of
the CANDELS survey. At each redshift, the most compact sources are those with little or no star
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verse. This suggests that they grew significantly in size, mass components, will lead to comparable growth in both

but much less in stellar mass. Initially there was some
suspicion that the stellar masses of the z ~ 2 sources
were overestimated, but deep spectroscopic data (Cap-
pellari et al. 2009; Newman et al. 2010; van de Sande
et al. 2011) have verified dynamically the high masses of
selected 1 < z < 2 sources and, in conjunction with the
abundance of dynamical masses for lower redshift sources
(Treu et al. 2005; van der Wel et al. 2005), provided a
valuable, independent confirmation of the size evolution.

Only two physical explanations have been put forward
to explain this remarkable growth in size while avoid-
ing the overproduction of present-day high-mass galax-
ies. Adiabatic expansion through significant mass loss
can lead to size growth (Fan et al. 2008, 2010). A galaxy
that loses mass as a result of winds driven by an active
nucleus or supernovae, for example, will adjust its size in
response to the shallower central potential. However, the
“puffing up” arising from baryonic mass loss occurs only
when the system is highly active and young in terms of

anewman@astro.caltech.edu

size and mass, minor mergers involving lower-mass com-
panions can produce more efficient size growth (Bezan-
son et al. 2009; Naab et al. 2009; Hopkins et al. 2010c).
This mechanism requires a high rate of occurrence of
minor mergers, a significant fraction of which must in-
volve gas-poor companions. Although the major merger
rate is observationally constrained reasonably well over
0 < z <1 (eg., Kartaltepe et al. 2007; Lin et al. 2008;
Bundy et al. 2009; de Ravel et al. 2009; Lotz et al. 2011)
and via a few measurements up to z ~ 3 (e.g., Bluck et al.
2009; Man et al. 2011), the rate at which minor merging
occurs requires exquisitely deep photometric data. For
this hypothesis, the key question is whether observations
confirm that minor merging occurs at the required rate.

The infrared Wide Field Camera 3 (WFC3/IR) on
board the Hubble Space Telescope (HST) enables us to
address the question of whether minor merging is suffi-
ciently frequent to account for the size growth of com-
pact sources since z ~ 2. The CANDELS survey (GO
12444/5; PIs: H. C. Ferguson and S. M. Faber) provides
an excellent resource for addressing this question since,
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| aboratoire d’Etude du Rayonnement et de la Matiére en Astrophysique

Massive Galaxies at High Redshift:

Rare, but...

Even scarcer at low redshift

g - due to smaller volume

Beware misjuding the evolution
- low-z population is not representative of
the same mass range at high z

Stellar fraction in BCG naturally limited
- Hierarchical assembly crucial to
understand cooling history
- final gas reservoir does cool,
but only onto central at late times



