A Systematic Approach to Cluster Formation in the Early Universe -Observations, Simulations, and New Surveys

Yi-Kuan Chiang

Roderik Overzier

Karl Gebhardt

University of Texas at Austin 09/10/2012

From proto to mature, how? ~ 1/3 t_H ~ 1/10 t_H

Mature cluster CL1252, z=1.24

Proto-cluster around radio galaxy TN1338 z=4.1

Extended, multiple halos

Compact, single halo Galaxies are red and old RDCS 1252.9-2927 9 billion light-years

Galaxies are forming stars 12 billion light years Miley et al. 2004

TNJ1338-1942

Blakeslee et al. 2003

The Proto-cluster "Zoo"...

Ouchi et al. 2005, LAE, z=6

Venemans et al. 2007, LAE, z=2.86

Hatch et al. 2011, Hα, z=2.35

Capak et al. 2011, sub-mm, z=5.3

Overzier et al. 2008, LBG, z=4.1

Kodama et al. 2007, JHK, z=3.13

Galaxy clusters in cosmological simulation

t=0.21 Gyr

t=1.0 Gyr

t=4.7 Gyr

t=13.6 Gyr

We think this is gonna work

ObservablesLCDMEnvironmentsδgalaxy (properties)SAM galaxyδmass

Over 3000 clusters extracted from the MR (Springel+05)

Allows us :

- Make predictions
- Compare structures observed with different methods
- Identify new proto-clusters

Statistical, simulations-assisted study of (proto-)cluster evolution from z=6 to z=0

Practical definition:

- Galaxy cluster gravitational bound DM halo with mass > 10¹⁴
 M_{sun}/h and its associated galaxies and gas
- Proto-cluster a collection of DM halos and their associated galaxies which will evolve into a galaxy cluster by z=0

Tools:

- DM density fields (δ_{mass} as the basic quantity for environments)
- Halo catalogues (M_{halo} > ~10^10 M_{sun})
- Semi-analytic galaxy catalogs (SAM) (Guo et al. 2011) ($M_{star} > ~10^9$ M_{sun}) (δ_{galaxy} as the observables)
- Multi-Wavelength Lightcone catalogues (Henriques et al. 2011)
- WMAP1 Cosmology (WMAP7 coming soon)
- Millennium Run Observatory (Overzier et al.2012)

Properties of proto-clusters in Millennium Size evolution

(linear in lookback time)

Physical quantity of environments Mass overdensity evolution

Probability density

Observables of proto-clusters Galaxy overdensity evolution

Probability density

Properties of proto-clusters in Millennium Galaxy overdensity versus Cluster Mass

Observables of proto-clusters LAE overdensity evolution

Solid: SFR > 1 M_{sun}/yr galaxies

0.9 0.8 z=2 0.7 0.6 0.5 0.4 **Probability density Gray: Random** 0.3 0.2 **Black:** Proto-cluster 0.1 0.0-1 5 7 0 1 2 з 4 6 8 0.8 0.7 z=3 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1 2 з 5 7 O 1 6 8 4 0.8 0.7 z=4 0.6 0.5 0.4 0.3 0.2 0.1 0.0-1 0 2 з 4 5 6 7 8 1 δ

galaxv

Dotted: LAEs

Galaxy bias – δ_{mass} vs. δ_{galaxy}

SFR > 1 M_{sun}/yr galaxies

Simulated observations - Example JHK selection on synthetic lightcone

Ζ

• Idea:

Where is the sweet spot to maximize the ability to identify proto-clusters with observational selections applied

• Example - JHK selection:

Get very rough "photometric redshift" using 3 bands to select 2.2<z<3 galaxies

Kajisawa et al. 2006 Kodama et al.2007 Hatch et al. 2011 Synthetic lightcone of Millennium+SAM galaxies with IGM correction

SAM:Guo et al. 2011Lightcone:Henriques et al. 2012IGM correction:Overzier et al. 2012

JHK selection on synthetic lightcone

Selection effects -We know it in simulated observations

JHK selection on synthetic lightcone

Projected overdensity of JHK galaxies

Centers of proto-clusters

Precise predictions from the Millennium Run Observatory

Overzier, Lemson et al. (arXiv:1206.6923) http://galformod.mpa-garching.mpg.de/mrobs/

THE UNIVERSITY OF TEXAS AT AUSTIN

Department of Astronomy 1 University Station, C1400 • Austin, Texas 78712-0259

McDonald Observatory THE UNIVERSITY OF TEXAS AT AUSTIN

Hobby-Eberly Telescope Dark Energy Experiment

- Proto-clusters have sizes of few to tens of Mpc
- Correspond to mass overdensities of a few that separate clearly from the field up to high redshifts
- Same is true for galaxy overdensities (SFR, M*, Lya,...), with overdensities of >~4 indicating proto-cluster identification success rate of ~100%
- Progenitors of different mass clusters are distinct in size, galaxy (mass) overdensity, and velocity dispersion
- But: the projection/selection effects increase the scatter between observables and physical properties
- These effects can now be understood/quantified by using accurate lightcone predictions from simulations
- Our detailed comparison with a large number of protoclusters from the literature and own observations is underway
- HETDEX is going to observe LAEs in a volume 15 times of Millennium

Chiang et al., in prep.

