The Galaxy Environment of z~6 Quasars

Eduardo Bañados (MPIA) banados@mpia.de

B. Venemans, F. Walter, J. Kurk, R. Overzier, M. Ouchi
Motivation

$z = 0$

Springel et al. 2005

$z = 1.4$

$z = 5.7$

Eduardo Bañados

Galaxy Environment of $z \sim 6$ QSOs
Motivation

- Galaxy overdensities or protoclusters around radio galaxies (see Venemans et al. 2007)
Motivation

- Galaxy overdensities or protoclusters around radio galaxies (see Venemans et al. 2007)

- Ambiguous results based on i-dropout galaxies around $z \sim 6$ QSOs. $\Delta z \approx 1$
Motivation

- Galaxy overdensities or protoclusters around radio galaxies (see Venemans et al. 2007)

- Ambiguous results based on i-dropout galaxies around $z\sim6$ QSOs. $\Delta z \approx 1$
 - Willot et al. 2005 no-overdensity
 - Stiavelli et al. 2005 overdensity
 - Kim et al. 2009 find both over/under-densities
i-dropouts

SDSS 1306+0356 at z=5.99

SDSS 1030+0524 at z=6.28

(Bañados+, in prep)
i-dropouts

SDSS 1306+0356 at $z=5.99$
SDSS 1030+0524 at $z=6.28$

(Bañados+, in prep)
i-drop 5 hours FORS2@VLT spectrum

Flux

Wavelength (Å)
i-drop 5 hours FORS2@VLT spectrum

Lyα at QSO redshift

Flux

Wavelength (Å)

Eduardo Bañados

Galaxy Environment of z ~ 6 QSOs
i-drop 5 hours FORS2@VLT spectrum

Lyα at QSO redshift

Nothing Clear!

Eduardo Bañados

Galaxy Environment of z ~ 6 QSOs
Lyman Alpha Emitters (LAEs)
Lyman Alpha Emitters (LAEs)

- Narrower redshift range $\Delta z \approx 0.1$
Lyman Alpha Emitters (LAEs)

- Narrower redshift range $\Delta z \approx 0.1$
- First study of LAEs around a high-z QSO ($z \geq 5.7$)
Lyman Alpha Emitters (LAEs)

- Narrower redshift range $\Delta z \approx 0.1$
- First study of LAEs around a high-z QSO ($z \geq 5.7$)

OH night sky emission bands

Dunlop 2012
ULAS J0203+0012 at z=5.72

FORS2@VLT

Galaxy Environment of z ~ 6 QSOs
Candidates Selection

FORS2 Filters

![Graph showing transmission vs. wavelength for different filters (NB, R, Z) and a synthetic LAE.](image-url)
Candidates Selection

FORS2 Filters

LAEs between $5.66 < z < 5.75$

![Graph showing the transmission of different filters across wavelengths for LAEs between $5.66 < z < 5.75$.]
Candidates Selection

FORS2 Filters

LAEs between $5.66 < z < 5.75$

![Graph showing transmission vs. wavelength and Z-NB vs. R-Z plots for LAEs and QSOs.]

Eduardo Bañados

Galaxy Environment of $z \sim 6$ QSOs
Candidates Selection

FORS2 Filters

LAEs between $5.66 < z < 5.75$
Candidates Selection

ULAS J0203+0012 at $z = 5.72$

Eduardo Bañados

Galaxy Environment of $z \sim 6$ QSOs
Candidates Selection

ULAS J0203+0012 at $z = 5.72$

Eduardo Bañados

Galaxy Environment of $z \sim 6$ QSOs
Blank Field Comparison
Blank Field Comparison

![Graph showing the relationship between number (less than NB) and NB magnitude. The data points are from Ouchi et al. 2008.](image)
Blank Field Comparison

Overdensity?

![Graph showing the number of QSOs as a function of NB magnitude]

Eduardo Bañados

Galaxy Environment of z ~ 6 QSOs
Blank Field Comparison

Overdensity?

![Graph showing the number of galaxies per magnitude bin for two datasets: Ouchi et al. 2008 and This Work. The graph plots the number of galaxies less than a given magnitude (NB) divided by 0.5 magnitude bins against magnitude. The data points are marked with error bars, and a line shows the trend. The graph also indicates a 4σ limit.]
No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields
Discussion

No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields

- Low number of statistics
Discussion

No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields

- Low number of statistics
- Strong ionizing radiation from the quasar prevents galaxy formation
Discussion

No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields

- Low number of statistics
- Strong ionizing radiation from the quasar prevents galaxy formation
- High-z QSOs may not always reside in highly overdense, large-scale environments
Discussion

No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields

- Low number of statistics
- Strong ionizing radiation from the quasar prevents galaxy formation
- High-z QSOs may not always reside in highly overdense, large-scale environments
- High-z QSOs may not reside in the most massive halos
Discussion

No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields.

- Low number of statistics
- Strong ionizing radiation from the quasar prevents galaxy formation
- High-z QSOs may not always reside in highly overdense, large-scale environments.
- High-z QSOs may not reside in the most massive halos.

Eduardo Bañados

Galaxy Environment of z ~ 6 QSOs
Discussion

No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields

- Low number of statistics
- Strong ionizing radiation from the quasar prevents galaxy formation
- High-z QSOs may not always reside in highly overdense, large-scale environments
- High-z QSOs may not reside in the most massive halos

Eduardo Bañados

Galaxy Environment of z ~ 6 QSOs
Discussion

No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields

- Low number of statistics
- Strong ionizing radiation from the quasar prevents galaxy formation
- High-z QSOs may not always reside in highly overdense, large-scale environments
- High-z QSOs may not reside in the most massive halos
- Fanidakis & Orsi (in prep.) show that QSOs inhabit halos of $\sim 10^{12} \, M_\odot$ and radio galaxies halos of $\geq 10^{13} \, M_\odot$
Discussion

No clear enhancement of LAEs (LBGs) in the QSO vicinity in comparison with blank fields

- Low number of statistics
- Strong ionizing radiation from the quasar prevents galaxy formation
- High-z QSOs may not always reside in highly overdense, large-scale environments
- High-z QSOs may not reside in the most massive halos
- Fanidakis & Orsi (in prep.) show that QSOs inhabit halos of $\sim 10^{12} \, M_\odot$ and radio galaxies halos of $\geq 10^{13} \, M_\odot$

THANKS!