

Exploring the SZE brightness of MUSIC proto-clusters to calibrate the Y-M scaling law

Federico Sembolini
Universidad Autonoma de Madrid
Sapienza Università di Roma

Gustavo Yepes, Marco De Petris, Emma Foschi Stefan Gottlöber, Luca Lamagna

OUTLINE

- The MUSIC dataset
- Baryon properties and SZ scaling relations of MUSIC clusters
- MUSIC proto-clusters:
 - 1.mass and angular-size distribution
 - 2. baryon properties
 - 3. evolution of the Y-M scaling relation in proto-clusters
- Conclusions

THE MUSIC DATASET

(Sembolini et al. 2012, arXiv:1207.4438, submitted to MNRAS)

MARENOSTRUM (MUSIC-1) resimulated clusters \(\cooling + SFR \)

•164 (82 relaxed clusters – 82 'bullet-like') Only few objects with $M > 10^{15} h^{-1}M_{SUN}$ cooling + SFR
resimulations
(model: Springel & Hernquist, 2003)

MULTIDARK (MUSIC-2) resimulated clusters

- •283 lagrangian regions
- •> 500 clusters $M > 10^{14} h^{-1} M_{SUN}$
- •> 2000 objects $M > 10^{13} h^{-1} M_{SUN}$

cooling + star formation (CSFR) & non radiative (NR)resimulations

Many objects with M > $10^{15}h^{-1}$ M_{SUN} m_{DM}= $9.01 \times 10^8h^{-1}$ M_{SUN} - m_{SPH}= $1.9 \times 10^8h^{-1}$ M_{SUN} Each cluster described by several millions of particles

700 resimulated clusters with M > $10^{14} h^{-1}M_{SUN}$

Large statistics to study baryonic properties and calibrate scaling relations

MUSIC-2 is a complete mass-limited volume sample: all objects beyond a (redshift varying) mass limit formed in the $1h^{-1}$ Gpc DM-only simulation have been resimulated

All MUSIC data (X-rays, SZ,, luminosities..)will be publicly available through the website http://music.ft.uam.es

BARYON PROPERTIES

- At high overdensities f_{star} increases with z, f_{gas} decreases
- The baryon fraction approaches the cosmic value at Δ_c =500 ($f_{bar}(CSFR) > f_{bar}(NR)$)

GAS FRACTION: COMPARISON WITH OBSERVATIONS

CSFR clusters:

- $\Delta_c = 500 \text{ f}_{gas} = (0.118 \pm 0.005)$
- f_{gas} compatible with observations at all overdensities (LaRoque 2006 (LR06); Maughan 2006 M(06); Vikhlinin 2006 (V06); Ettori 2010 (E10); Zhang 2010 (Z10))

Y – M scaling relation

$$|YD_A^2 \propto f_{gas} M_{TOT}^{5/3} E(z)^{2/3}|$$

$$Y = YD_A^2 \cdot E^{-2/3}(z) f_{gas}^{-1}$$

(Y in h^{-2} Mpc², M in h^{-1} M_{sun})

Y extracted from simulated maps

(ray-tracing)

$$y = \int n_e \frac{k_B T_e}{m_e c^2} \sigma_T dl \qquad \longrightarrow \qquad y_{pix} = \sum_{\alpha} \sum_i \frac{k_B \sigma_T}{m_e c^2} T_{e,i} n_{e,i} W(r_i, h_i) d\ell_i$$

A = 1.66

in the self similar scenario

Y – M scaling relation

$$Y_{\Delta} = 10^{B} \left(\frac{M_{\Delta}}{h^{-1} M_{\odot}}\right)^{A} E(z)^{2/3} [h^{-2} M p c^{2}]$$

The analysis of MUSIC massive clusters Y-M scaling relation confirms the self-similar scenario

$$Y_{500} = 10^{-28.3 \pm 0.2} \left(\frac{M_{500}}{h^{-1} \text{M}_{\odot}}\right)^{1.66 \pm 0.02} E(z)^{2/3} [h^{-2} Mpc^2]$$

As in observational scaling relations, we assume f_{gas} constant (Sembolini et al., 2012)

The f_{gas} -M scaling relation

The gas fraction is linearly dependent on mass (Sembolini et al 2012)

$$f_{gas} = 10^{B_2} \left(\frac{M_{\Delta}}{h^{-1} \mathrm{M}_{\odot}}\right)^{A2} \stackrel{\bullet}{\blacktriangleright} \text{CSFR}$$

$$\stackrel{\wedge}{\blacktriangleright} \text{NR}$$

This effect is bigger at high overdensities and affects both NR and CSFR clusters

$$f_{gas}(\Delta_c = 2500) = 10^{-3.5 \pm 0.2} \left(\frac{M_{2500}}{h^{-1} M_{\odot}}\right)^{0.17 \pm 0.01}$$

The evolution of the Y-M scaling relation

No redshift evolution at low overdensities
Only at high overdensities and at z>0.5 a small deviation from self-similarity is present

(Sembolini et al. 2012)

Defining a protocluster in a numerical simulation

- Using merger-tree, we trace all the objects at high redshift(s) which will end up into a cluster at z=0
- We define as protocluster the most massive high-redshift object among all the cluster's progenitors

Protoclusters of galaxies in MUSIC simulations

- Only radiative clusters analyzed
- Analysis of protoclusters evolving in the most massive clusters of galaxies -

$$M_v > 5 \times 10^{14} h^{-1} M_{SUN}$$
 at z=0 (282 clusters):

- 282 main progenitors (most massive protocluster for each object)
- 5 most massive protoclusters for each cluster (1410 protoclusters)
- 3 different redshifts analyzed:

•
$$z = 1.5, 2.3, 4.0$$

- Properties of protoclusters studied at virial radius
- At $z = 4 \sim 70\%$ of most massive objects correspond to the most massive objects at z = 0(>80% at z = 1.5)

- > 100 objects with M > $10^{14}h^{-1}M_{SUN}$
- <M2/M1> ~ 0.5
- <M5/M1> << 0.5

- < 10 objects with M > $10^{14}h^{-1}M_{SUN}$
- <M2/M1> \sim 0.65
- <M5/M1> ~ 0.4

- ~ 10 objects with M > $10^{13}h^{-1}M_{SUN}$
- <M2/M1> ~ 0.8
- $< M5/M1 > \sim 0.5$

 $1.1 \times 10^{12} h^{-1} M_{SUN} < M < 2.0 \times 10^{14} h^{-1} M_{SUN}$

GAS FRACTION AND STELLAR FRACTION IN PROTOCLUSTERS $@R_{vir}$

(main progenitors)

•
$$z = 1.5$$

$$f_{gas} = 0.115 \pm 0.004$$

$$f_{star} = 0.048 \pm 0.003$$

$$f_{bar} = 0.166 \pm 0.007$$

•
$$z = 2.3$$

$$f_{gas} = 0.115 \pm 0.004$$

 $f_{gas} = 0.112 \pm 0.005$

$$f_{star} = 0.054 \pm 0.006$$

$$f_{\rm bar} = 0.167 \pm 0.011$$

•
$$z = 4.0$$

$$f_{gas} = 0.122 \pm 0.014$$

$$f_{star} = 0.057 \pm 0.011$$

 $f_{bar} = 0.173 \pm 0.022$

Mean values of star and gas fraction compatible with z≤1 - baryon fraction compatible with $\Omega b/\Omega m=0.174$ – gas and star fraction linear dependent from total mass

GAS FRACTION AND STELLAR FRACTION **IN PROTOCLUSTERS (2)** $@R_{vir}$

(5 most massive progenitors)

Higher dispersion than when considering only the one single progenitor, but same mean values of gas, star and baryon fraction

Y-M relation of MUSIC PROTOCLUSTERS

z = 1.5

- Similar results than at z = 1 (low deviation from self-similarity)
- When considering 5 progenitors, the effect of smallest non-virialized objects introduces a deviation from self-similarity

Y-M relation of MUSIC PROTOCLUSTERS (2)

$$z = 2.3$$

- Deviation from self-similarity slightly bigger than @z=1.5
- Same behaviour when considering one or five progenitors

Y-M relation of MUSIC PROTOCLUSTERS (3)

$$z = 4.0$$

- Strong deviation from self-similarity : A >> 1.66
- Same behaviour when considering one or five progenitors

Evolution of the Y-M relation in PROTOCLUSTERS

- Y-M scaling relation deviates from self-similarity at z > 0.5 (Sembolini et al. 2012)
- Deviation from self-similarity becomes stronger at z > 2

Angular size distribution of protoclusters

$$3.6 \times 10^{-8} < Y < 1.4 \times 10^{-5} [h^{-1} \text{Mpc}^2]$$

$$\theta_{vir} = \frac{2R_{vir}}{D_A} \approx \frac{10r_c}{D_A} = 10\theta_c$$

 $\theta_c \ll 1 \ arcmin$

Next coming analysis: the Curie simulation

200*h*⁻¹ Mpc box, same cosmology as MUSIC done in multiple mass resolutions:

- Gas+ Cooling+SF (S&H model) 2×1024³ (280 snapshots stored.)
- M_{DM} =4.6×10⁸ h^{-1} M_{SUN} ; M_{gas} =9.7×10⁷ h^{-1} M_{SUN}
- Full AHF analyses + Merger trees available for half of snapshots

Analysis of ALL protoclusters forming in a 200*h*⁻¹ Mpc box (not only the progenitors of most massive clusters)

http://curiehz.ft.uam.es

CONCLUSIONS

- Analysis of 1410 MUSIC protoclusters at z = 1.5, 2.3, 4: the most massive progenitors of MUSIC most massive clusters
- At z = 1.5 many clusters have already been formed (M > $10^{14}h^{-1}M_{SUN}$)
- At z > 2 many progenitors of the same cluster(s) show similar masses
- The mean values of gas, star and baryon fraction of protoclusters are very similar to the mean values of clusters gas and star fraction depends on total mass
- The Y-M scaling relation of protoclusters shows a deviation from self-similarty -A >> 1.66 at z > 2