Growing-up at high redshift: from proto-clusters to galaxy clusters

Madrid, Spain

13 Sep. 2012

Submillimeter Galaxies in the SSA22 Protocluster at z=3.1

Hideki UMEHATA¹

Y. Tamura¹, K. Kohno¹, S. Ikarashi¹, T. Takata², K. Nakanishi², Y. Matsuda²,

T. Yamada³, B. Hastukade⁴, G. Wilson⁵, M. Yun⁵, D. Hughes⁶

¹⁾ The Univ. of Tokyo, ²⁾ NAOJ, ³⁾ Tohoku Univ., ⁴⁾ Kyoto Univ., ⁵⁾UMASS, ⁶⁾ INAOE

Outlines

§ Introduction

- SMGs and Proto-cluster
- SSA22 Field

§ Observations and Data Analysis

- Multi-wavelength Data set
- Counterpart Identification
- § Results and Discussions
 - photometric redshifts
 - SMGs within the z=3.1 Large Scale Structure
 - Submm bright AGNs at the core of the Protocluster

§ Summary and Future works

Introduction

Submillimeter Galaxies (SMGs)

§ Physical properties (e.g., Chapman ea 2005, Smolcic ea 2012)

- Thermal dust emission is dominant

$$L_{\rm FIR} \simeq 10^{13} L_{\rm Sun}$$
, SFR $\simeq 1000 M_{\rm Sun}$ /yr

- High-redshift

$$z \simeq 1\text{-}5$$
 , $z_{median} \simeq 2.2\text{-}3.1$

- Massive

$$M_{gas} \sim 10^{10-11} M_{Sun,} M_{stellar} \sim 10^{10-11} M_{Sun}$$

- § Overlap with AGNs (e.g., Alexander ea 2005, 2008)
 - A part of SMGs horbour X-ray luminous AGNs.
 - FIR Luminosity should be still dominated by Star-formation.

=> Why Protocluster ?

SMGs and a Protocluster

§ Predictions in the CDM framework

- SMGs should reside in massive DH and clustering
- would be Progenitors of massive elliptical galaxies.

§ Observational Evidence

- high amplitude of clustering (e.g. Hickox ea 2012)
- SMGs in overdense regions

(e.g., Capak ea 2012, Daddi ea 2009, Chapman ea 2009)

=> the relation between SMGs and each protocluster is still unclear...

-> SSA22 Protocluster at z=3.1!

SSA22 protocluster at z=3.09

⁽Matsuda ea 2005)

Observations and Data Analysis

AzTEC/ASTE SMG Survey in SSA22

Multi-wavelength Identification

§ Observations

Inst.	Band / λ	Ref.
VLA	1.4 GHz	PI: R. Ivison
MIPS (not full)	24 um	Archive
IRAC (not full)	ch1 – ch4	Archive
MOIRCS (not full)	J, H, Ks	Uchimoto+11
UKIRT	Ј, К	Archive
S-Cam / WFCAM	U, B, V, R, i', z'	Hayashino+04
Chandra (not full)	U	Archive

Multi-wavelength Identification

§ Counterpart Identification

(e.g., Ivison ea 07, Biggs ea 2010,, Yun ea 11)

- Reference Data set

(1) VLA 1.4GHz, (2) MIPS 24um, (3) IRAC Color of 3.6, 4.5, 5.8, 8.0 um

Results: Photometric Redshift

Photo-z estimation

§ HYPERZ

- Photometry Data

Discussion: SMGs at z=3 protocluster

SMGs and the LSS at z=3

Angular correlation Function

- => SMGs should reside in the LSS traced by LAEs at z=3.1 universe.
- => Biased SMG formation in the mass assembled regions.

=> At a proto-cluster core, Space density is greater by an magnitude of magnitude ?

Discussion: Submm bright AGNs

Submm Bright AGNs at z~3

Stellar mass vs BH mass

Summary and Future Plan

§ We have investigated the nature of 1.1mm SMGs in the SSA22 Field.

§ SMGs in the protocluster at z=3.1

- Counterpart ID and photo-z search show 7 SMGs are candidates.
- High concentration and density at the core indicate biased SMG formation at the overdense environment.
- CCF also argued SMGs should reside in z=3.1 Protocluster.

§ Submm bright AGNs in the protocluster at z=3.1

- 3 Submm bright AGNs at z~3 are found at the core.
- These would be at their terminal epoch of Starburst.

§ Future Plans

- Spectroscopy follow up are strongly required